教案吧 > 初中教案 > 八年级教案 >

八年级数学教案有哪些

时间: 新华 八年级教案

教案可以帮助教师有计划地进行教学,从而避免课堂上的混乱和无效性。写好八年级数学教案有哪些有什么技巧?这里给大家整理八年级数学教案有哪些,方便大家学习。

八年级数学教案有哪些篇1

一、教学目的

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

二、重点、难点和难点的突破方法:

1、重点:认识中位数、众数这两种数据代表

2、难点:利用中位数、众数分析数据信息做出决策。

三、例习题的意图分析

1、教材P143的例4的意图

(1)这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

(3)问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材P145例5的意图

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

(3)、例5也反映了众数是数据代表的一种。

四、课堂引入

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

五、例习题的分析

教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材P145例5,由表中第二行可以查到23.5号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

八年级数学教案有哪些篇2

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级数学教案有哪些篇3

教学目标:

知识与技能

1.掌握直角三角形的判别条件,并能进行简单应用;

2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

教学难点

会辨析哪些问题应用哪个结论.

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△ABC的两边AB=5,AC=12,则BC=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈、如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉、继续尝试:下面的&39;三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

满足a2+b2=c2的三个正整数,称为勾股数.

⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.

⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.

⒋、习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

八年级数学教案有哪些篇4

一、教学目标

【知识与技能】

理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理;利用勾股定理的逆定理判定一个三角形是不是直角三角形。

【过程与方法】

通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

【情感态度与价值观】

通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

二、教学重难点

【重点】

勾股定理逆定理的应用;

【难点】

探究勾股定理逆定理的证明过程。

三、教学过程

(一)导入新课

复习回顾出勾股定理。

师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系。

追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?

师生活动:师生共同得出新的命题,教师指出其为勾股定理的逆命题。

(四)小结作业

小结:勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题?

作业:总结一下判定一个三角形是直角三角形的方法。

八年级数学教案有哪些篇5

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质.

难点:

会用科学计数法表示小于1的数.

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0=1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012=1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数.启发学生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此发现其中的规律,从而有0.0000000012=1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案有哪些篇6

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

八年级数学教案有哪些篇7

教学目标:

1、知道负整数指数幂=(a≠0,n是正整数)、

2、掌握整数指数幂的运算性质、

3、会用科学计数法表示小于1的数、

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

教学过程:

一、课堂引入

1、回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2、回忆0指数幂的规定,即当a≠0时,a0=1、

3、你还记得1纳米=10?9米,即1纳米=米吗?

4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的、

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012=1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012=1。2×10?2,0。0012=1。2×10?3,0。00012=1。2×10?4,以此发现其中的规律,从而有0。0000000012=1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

八年级数学教案有哪些篇8

教学任务分析

教学目标

知识技能

探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

数学思考

能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

解决问题

通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

情感态度

在应用等腰梯形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

重点

等腰梯形的性质及其应用.

难点

解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

教学流程安排

活动流程图

活动的内容和目的

活动1想一想

活动2说一说

活动3画一画

活动4做—做

活动5练一练

活动6理一理

观察梯形图片,引入本节课的学习内容.

了解梯形定义、各部分名称及分类.

通过画图活动,初步发现梯形与三角形的转化关系.

探究得到等腰梯形的性质.

通过解决具体问题,寻找解决梯形问题的方法.

通过整理回顾,巩固知识、提高能力、渗透思想.

教学过程设计

问题与情景

师生行为

设计意图

[活动1]

观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

演示图片,学生欣赏.

结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

[活动2]

梯形定义一组对边平行而另一组对边不平行的四边形叫做梯形.

学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

通过类比,培养学生归纳、总结的能力.

问题与情景

师生行为

设计意图

一些基本概念

(1)(如图):底、腰、高.

(2)等腰梯形:两腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一个角是直角的梯形叫做直角梯形.

学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后,教师可以强调:①梯形与四边形的关系;

②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

熟悉图形,明确概念,为探究图形性质做准备.

[活动3]

画一画

在下列所给图中的每个三角形中画一条线段,

(1)怎样画才能得到一个梯形?

(2)在哪些三角形中,能够得到一个等腰梯形?

在学生独立探究的基础上,学生分组交流.

教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

本次活动教师应重点关注:

(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

(2)学生能否将等腰三角形转化为等腰梯形.

(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

问题与情景

师生行为

设计意图

[活动4]

做—做

探索等腰梯形的性质(引入用轴对称解决问题的思想).

在一张方格纸上作一个等腰梯形,连接两条对角线.

(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的&39;线段和相等的角?学生画图并通过观察猜想;

(2)这个等腰梯形的两条对角线的长度有什么关系?

学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

针对不同认识水平的学生,教师指导学生活动.

师生共同归纳:

①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

②等腰梯形两腰相等.

③等腰梯形同一底上的两个角相等.

④等腰梯形的两条对角线相等.

教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

[活动5]

练—练

例1(教材P118的例1)略.

例2如图,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的长.

师生共同分析,寻找解决问题的方法和策略.

例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

解:(略)

通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

问题与情景

师生行为

设计意图

例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

BE⊥AC于E.

求证:BE=CD.

分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

证明(略)

例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

[活动6]

1.小结

2.布置作业

(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

(2)已知:如图,

梯形ABCD中,CD//AB,,.

求证:AD=AB—DC.

(3)已知,如图,

梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

师生归纳总结:

解决梯形问题常用的方法:

(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

(2)“作高”:使两腰在两个直角三角形中(图2);

(3)“延腰”:构造具有公共角的两个等腰三角形(图3);

(4)“平移对角线”:使两条对角线在同一个三角形中(图4);

(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

尽量多地让学生参与发言是一个交流的过程.

梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

八年级数学教案有哪些篇9

教材分析

本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

学情分析

本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

教学目标

1、知识与技能:

掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。

2、过程与方法:

(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;

(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

3、情感态度与价值观:

(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

(2)通过性质的推导体会“特殊。

八年级数学教案有哪些篇10

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

八年级数学教案有哪些篇11

一.教学目标:

1.了解方差的定义和计算公式。

2.理解方差概念的产生和形成的过程。

3.会用方差计算公式来比较两组数据的波动大小。

二.重点、难点和难点的突破方法:

1.重点:方差产生的必要性和应用方差公式解决实际问题。

2.难点:理解方差公式

3.难点的突破方法:

方差公式:S=[(-)+(-)+…+(-)]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三.例习题的意图分析:

1.教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2.教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看20__年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五.例题的分析:

教材___例_在分析过程中应抓住以下几点:

1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3.方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六.随堂练习:

1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数12345

段巍1314131213

金志强1013161412

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.__的成绩比__的成绩要稳定。

七.课后练习:

八年级数学教案有哪些篇12

一、教学目标

1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2.会进行简单的二次根式的除法运算;

3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4、培养学生利用二次根式的除法公式进行化简与计算的能力;

5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6、通过分母有理化的教学,渗透数学的简洁性、

二、教学重点和难点

1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

2.难点:二次根式的除法与商的算术平方根的关系及应用.

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

内容可引导学生自学,进行总结对比.

四、教学手段

利用投影仪.

五、教学过程

(一)引入新课

学生回忆及得算数平方根和性质:( a ≥0 ,b ≥0)是用什么样的&39;方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根.

一般地,有( a ≥0 ,b >0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

例1?化简:

(1);(2);(3);

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数、

例2?化简:

(1);(2);

解:(1)

(2)

让学生观察例题中分母的特点,然后提出,的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决、

学生讨论本节课所学内容,并进行小结.

(三)小结

1.商的算术平方根的性质.(注意公式成立的条件)

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

(四)练习

1.化简:

(1);(2);(3)、

2.化简:

(1);(2);(3)

六、作业

教材P.183习题11.3;A组1.

七、 板书设计

八年级数学教案有哪些篇13

活动一、创设情境

引入:首先我们来看几道练习题(幻灯片)

(复习:平行线及三角形全等的知识)

下面我们一起来欣赏一组图片(幻灯片)

[学生活动]观看后答问题:你看到了哪些图形?

(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

[学生活动]小组合作交流,拼出图案的类型。

同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的.性质。(幻灯片出示课题)

活动二、合作交流,探求新知

问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

[学生活动]认真观察、讨论、思考、推理。

鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

小结平行四边形的性质:

平行四边形的对边相等

平行四边形的对角相等(这里要弄清对角、对边两个名词)

你能演示你的结论是如何得到的吗?(学生演示)

你能证明吗?(幻灯片出示证明题)

[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

自己完成性质2的证明。

活动三、运用新知

性质掌握了吗?一起来看一道题目:

尝试练习(幻灯片)例1

[学生活动]作尝试性解答。

八年级数学教案有哪些篇14

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:

2.本质:

四、精讲精练

(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

八年级数学教案有哪些篇15

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

八年级数学教案有哪些篇16

教学目的

使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。

重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。

难点:比较复杂图形,灵活应用三角形外角的性质。

教学过程

一、复习提问

1.三角形的内角和与外角和各是多少?

2.三角形的外角有哪些性质?

二、新授

例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数。

分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决。

做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°

A

BDEA

(1)你会求∠DAE的度数吗?与你的同伴交流。

(2)你能发现∠DAE与∠B、∠C之间的关系吗?

(2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗?

分析:(1)∠DAE是哪个三角形的内角或外角?

(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?

(3)∠AED是哪个三角形的外角?

(4)在△AEC中已知什么?要求∠AEB,只需求什么?

(5)怎样求∠EAC的度数?

三、巩固练习

1.如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,∠ADB的度数。

2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各内角的度数。

四、小结

三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。

八年级数学教案有哪些篇17

一、说教材:这节课主要是通过测量操作活动认识平行四边形,了解平行四边形对边平行且相等,对角相等,并掌握平行四边形底和高的概念,初步会画出平行四边形底上的高。

说教法:新教材的引入方法与以往的不同,是采用两条等宽色带进行交叠后产生的四边形来引入平行四边形的。首先突出的是平行四边形“面”的形象,然后再到“边”(面的边缘)。教学分两两个环节。第一步是认识平行四边形。让学生观察两条互相平行的透明色带交叠出的四边形,进而观察这些四边形的特点。学生通过操作、比较、思考后发现:这些四边形的两组对边分别平行,然后引导学生小结平行四边形的定义,并给出数学记号。让学生找生活中的平行四边形的例子,一方面可以丰富对平行四边形的表象,另一方面加深学生“对两组对边分别平行”的认识。

第二步是认识平行四边形的底和高。平行四边形的底和高是相对的,而非绝对的。平行四边形的任何一条边都可以为底边,那么从底边的对边上的一点出发做底边的垂线,该点与垂足之间的线段就是该底边上的高。然而“高”的概念对学生来说不容易建立,以为学生在生活经验中的高,往往是身高、树高、塔高等,指的是直立于地面上的对象的高度,隐含着垂直的定义。因此教材中,我从垂线这一概念引入,再通过垂线段建立起高的概念,同时进行操作观察,这些高的位置与关系。从中得出:同一底边上可以画出无数条高,这些高的长度都相等,但在一般情况下,我们只要作一条高就可以了。并在此基础上进行拓展,如形外高的操作,或者底不是水平方向的怎样操作高等,从而拓宽了学生对平面图形中“高”的认识。

19.1平行四边形

[知识与能力目标]:1、通过操作活动认识平行四边形。2、掌握平行四边形底和高的概念,并初步会画出平行四边形底上对应的高。

[过程与方法]

[情感目标]:让学生享受学习的快乐,分享成功的喜悦。【教学重点】:会画出平行四边形底上对应的高。【教学难点】:会画出平行四边形底上对应的【教学过程】

一、创设情景、激发兴趣

1、同学们,你们认识了哪些几何图形?这些几何图形在我们的生活中随处可见。它使我们的生活更加丰富多彩。

2、出示发现什么?------出现了一个新的四边形

这个四边形有什么特殊呢?今天我们就来研究一下。

板书:平行四边形

二、新课探究

1、师:根据你对平行四边形的认识,请你选择小棒摆一个平行四边形。指名学生用实投展示,组织学生评价。

2、师:打开学具袋,从中找到平行四边形。

3、问:请你们将学习小组找到的平行四边形放在一起,观察一下,看看你能发现什么?

提出要求:四人一组,充分利用学具,开动脑筋,想办法,共同探讨。小组汇报,集体交流。归纳概括平行四边形的特征。

问:我们通过观察、动手操作,用自己的方法发现了平行四边形的特征,那什么是平行四边形呢?你能用自己的话说一说吗?

小结:

两组对边分别平行的四边形叫做平行四边形。

4、出示图片图上的物体都是我们经常见到的,推拉铁门、栏杆、标志、花窗。这些物体中都隐藏着平行四边形,你能把它找出来吗?

5、判断:下面的图形是不是平行四边形?

判断一个图形是不是平行四边形,你认为关键是什么?

三、平行四边形的底与高

行四边形的底与高

1、学生在作业纸上自己试画平行四边形的高。

2、教师指导板书画高的方法。

问:通过画高,你有什么新的发现?

(1)平行四边形有4条底,每一条边都可以作为底。

(2)同一条底上有无数条高,每条高都相等。

3、识别、提高。

(1)投影出示:画在平行四边形外边的高,让学生识别认识。

小结:平行四边形的高有的可以画在平行四边形的里边,有的可以画在平行四边形的外边,不管画在哪儿都要注意底和高的对应关系.

八年级数学教案有哪些篇18

《一次函数的图象应用》

教学目标

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

2.过程与方法

经历探索一次函数的应用问题,发展抽象思维.

3.情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

重、难点与关键

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习.

三、课堂总结,发展潜能

由学生自我评价本节课的表现.

四、布置作业,专题突破

课本P120习题14.2第9,10,11题.

板书设计

14.2.2一次函数(4)

1、一次函数的应用例:

11401