教案吧 > 初中教案 > 八年级教案 >

创新教案八年级数学电子版

时间: 新华 八年级教案

教案可以帮助教师及时了解学生的学习情况和学习成果,有针对性地调整教学策略,更好地促进学生的学习。什么样的创新教案八年级数学电子版才算是优秀的呢?这里整理一些创新教案八年级数学电子版,方便大家学习。

创新教案八年级数学电子版篇1

一、课堂导入

回顾平行四边的性质定理及定义

1.什么叫平行四边形?平行四边形有什么性质?

2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

二、新课讲解

平行四边形的判定:

(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

(平行四边形判定定理):

(一)两组对边分别相等的四边形是平行四边形。

设问:这个命题的前提和结论是什么?

已知:四边形ABCD中,AB=CD,BC=DA。

求证:四边ABCD是平行四边形。

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

板书证明过程。

小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

创新教案八年级数学电子版篇2

一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算:(a-b)=

方法一:方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3-a)2、(2a-1)3、(3y-x)

4、(2x–4y)5、(3a-)

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999)2、(a–b–c)

3、(a+1)-(a-1)

(四)达标训练

1、、选择:下列各式中,与(a-2b)一定相等的是()

A、a-2ab+4bB、a-4b

C、a+4bD、a-4ab+4b

2、填空:

(1)9x++16y=(4y-3x)

(2)()=m-8m+16

2、计算:

(a-b)(x-2y)

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a–b=1,a+b=25,求ab的值

创新教案八年级数学电子版篇3

教学目标:

1、理解运用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的综合运用。

3、进一步培养学生综合、分析数学问题的能力。

教学重点:

运用平方差公式分解因式。

教学难点:

高次指数的转化,提公因式法,平方差公式的灵活运用。

教学案例:

我们数学组的观课议课主题:

1、关注学生的合作交流

2、如何使学困生能积极参与课堂交流。

在精心备课过程中,我设计了这样的自学提示:

1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

①-x2+y2②-x2-y2③4-9x2

④(x+y)2-(x-y)2⑤a4-b4

3、试总结运用平方差公式因式分解的条件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?

5、试总结因式分解的步骤是什么?

师巡回指导,生自主探究后交流合作。

生交流热情很高,但把全部问题分析完已用了30分钟。

生展示自学成果。

生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)

生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

生5:a4-b4可分解为(a2+b2)(a2-b2)

生6:不对,a2-b2还能继续分解为a+b)(a-b)

师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

创新教案八年级数学电子版篇4

教学任务分析

教学目标

知识技能

探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.

数学思考

能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.

解决问题

通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.

情感态度

在应用等腰梯形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.

重点

等腰梯形的性质及其应用.

难点

解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.

教学流程安排

活动流程图

活动的内容和目的

活动1想一想

活动2说一说

活动3画一画

活动4做—做

活动5练一练

活动6理一理

观察梯形图片,引入本节课的学习内容.

了解梯形定义、各部分名称及分类.

通过画图活动,初步发现梯形与三角形的转化关系.

探究得到等腰梯形的性质.

通过解决具体问题,寻找解决梯形问题的方法.

通过整理回顾,巩固知识、提高能力、渗透思想.

教学过程设计

问题与情景

师生行为

设计意图

[活动1]

观察下图中,有你熟悉的图形吗?它们有什么共同的特点?

演示图片,学生欣赏.

结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.

由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.

[活动2]

梯形定义一组对边平行而另一组对边不平行的四边形叫做梯形.

学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.

通过类比,培养学生归纳、总结的能力.

问题与情景

师生行为

设计意图

一些基本概念

(1)(如图):底、腰、高.

(2)等腰梯形:两腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一个角是直角的梯形叫做直角梯形.

学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后,教师可以强调:①梯形与四边形的关系;

②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.

熟悉图形,明确概念,为探究图形性质做准备.

[活动3]

画一画

在下列所给图中的每个三角形中画一条线段,

(1)怎样画才能得到一个梯形?

(2)在哪些三角形中,能够得到一个等腰梯形?

在学生独立探究的基础上,学生分组交流.

教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.

本次活动教师应重点关注:

(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.

(2)学生能否将等腰三角形转化为等腰梯形.

(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.

等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.

问题与情景

师生行为

设计意图

[活动4]

做—做

探索等腰梯形的性质(引入用轴对称解决问题的思想).

在一张方格纸上作一个等腰梯形,连接两条对角线.

(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的&39;线段和相等的角?学生画图并通过观察猜想;

(2)这个等腰梯形的两条对角线的长度有什么关系?

学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.

针对不同认识水平的学生,教师指导学生活动.

师生共同归纳:

①等腰梯形是轴对称图形,上下底的中点连线是对称轴.

②等腰梯形两腰相等.

③等腰梯形同一底上的两个角相等.

④等腰梯形的两条对角线相等.

教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.

[活动5]

练—练

例1(教材P118的例1)略.

例2如图,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的长.

师生共同分析,寻找解决问题的方法和策略.

例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.

分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.

其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

解:(略)

通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.

问题与情景

师生行为

设计意图

例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

BE⊥AC于E.

求证:BE=CD.

分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

证明(略)

例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.

[活动6]

1.小结

2.布置作业

(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.

(2)已知:如图,

梯形ABCD中,CD//AB,,.

求证:AD=AB—DC.

(3)已知,如图,

梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)

师生归纳总结:

解决梯形问题常用的方法:

(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);

(2)“作高”:使两腰在两个直角三角形中(图2);

(3)“延腰”:构造具有公共角的两个等腰三角形(图3);

(4)“平移对角线”:使两条对角线在同一个三角形中(图4);

(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).

尽量多地让学生参与发言是一个交流的过程.

梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.

学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.

创新教案八年级数学电子版篇5

不知不觉间,从开学到现在已有一段时间了。回顾这段时间来自己的数学教学工作,感觉无论是课堂教学效果还是学生的学习成绩都不容乐观。上学期末,学生的考试成绩不是很理想,所以在在本学期中,我结合自身的实际和学生的特点,认真的备课,上好每一堂课,在这段时间的教学中,我有如下的教学反思:

一、备课过程中还有不足的地方,没有充分认识到知识点的难度和学生的实际情况。

从几次的小测验来看,数学成绩处在中等及稍偏下的学生成绩下滑较大。回顾自己在教学中所进行的备课工作,以及针对性练习,感觉难度过大,没有估计到中等生的学习能力,无形中给中等生的听课和理解增加了难度,造成其对知识点的理解不够透彻,运用知识的能力下降。通过小测试考试试卷,发现中等生在答题的过程中,知识点混淆不清,解题思路混乱,不能抓住问题的关键。

二、对部分成绩较好的学生的监管力度不够,放松了对他们的学习要求。

考试不仅中等生的成绩下滑,少数平时数学成绩较好学生考试成绩很差,勉强及格甚至不及格。究其原因是对该部分学生在课后的学习和练习的过程中,没有过多的去关注,未能及时发现他们存在的问题并给以指正,导致其产生骄傲自满的情绪,学习也不如以往认真,作业也马虎了事,最终成绩出现重大危机。

三、没有抓紧对基础知识和基本技能的训练。

从平常的测验,作业来看,相当部分学生存在着计算方面的问题,稍微复杂一点的计算错误百出,简单的几何作图和识图能力都很差。有部分学生甚至不会找全等三角形对应边、角,常用的全等三角形的判定方法如“SAS”、“ASA”“SSS”这几个定理都没有掌握好,至于角平分线性质及判定定理和线段垂直平分线性质与判定就更不用说了。相当部分学生分不清平方根与算术平方根的区别与联系,不会进行简单的开方计算。

通过八年级数学上学期的教学和下学期教学的这段时间,我深刻体会到在学生真的在数学方面学习兴趣不像其他科目一样感兴趣。所以我们数学老师任重而道远,既要提高学生的学习兴趣,又要引导学生自主探索学习,当他们遇到自己无法解决的疑难问题时,我们教师在观察的过程中应该做适当的评价和提示,以弥补学生学习自主学习能力的不足之处,从而达到化难为易、提高学生数学水平的目的。在课堂教学过程中,和课后的接触中诚信的交流(教师与学生之间,学生与学生之间)意味着教师对学生的殷切的期望和美好的激励。我们教师都喜望每一个学生都能学好数学,真诚的赞美学生数学做题或学习的成功,让学生在课堂中能在不断出现的新问题和不断被自己“聪明”的解决问题的成功愉悦中进行学习,让他们享受到学习的快乐。

整体的数学教学还是要从最基础的抓起,计算是基础中的基础。从试卷上所反映出来的问题说明本班学生在最基本的计算上还有待于加强。其次是培养学生分析问题的能力,解题的关健是会分析,分析能力的提高,才能更有效地解决问题的。再次学生的形象思维能力还有待于加强,对于图形题、作图题这类比较抽象的空间思维能力的题,学生的解决能力还存在欠缺。我们学习数学的目的就是为了解决问题。在解决问题还要加强学生分析问题、概括问题、发现问题的能力,在教学中多重视学生的反馈,注重学生学习能力的培养。最后还是要从自身教学水平和教学能力上去分析,加强业务学习,注重课堂教学,认真对待每一次的教学,及时反思,及时总结。

创新教案八年级数学电子版篇6

一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质

性质1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

性质2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

性质3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac<bc<p="">

不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

三、解不等式的步骤:

1、去分母;

2、去括号;

3、移项合并同类项;

4、系数化为1。

四、解不等式组的步骤:

1、解出不等式的解集

2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:

(1)审题;

(2)设未知数,找(不等量)关系式;

(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:

1、求4x-67x-12的非负数解.

2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

创新教案八年级数学电子版篇7

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999

(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

13834