教案吧 > 初中教案 > 八年级教案 >

初二数学教案模板ppt

时间: 新华 八年级教案

通过编写教案,教师可以明确教学目标、教学内容和教学计划,以便更好地组织教学,从而提高教学质量和效率。怎么写出优秀的初二数学教案模板ppt?这里给大家分享初二数学教案模板ppt,方便大家学习。

初二数学教案模板ppt篇1

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的&39;有效数学模型。

重点、难点

1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价—成本;=商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息—利息税=48。6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%—x

由等量关系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

初二数学教案模板ppt篇2

方差

一. 教学目标:

1. 了解方差的定义和计算公式。

2. 理解方差概念的产生和形成的过程。

3. 会用方差计算公式来比较两组数据的波动大小。

二. 重点、难点和难点的突破方法:

1. 重点:方差产生的必要性和应用方差公式解决实际问题。

2. 难点:理解方差公式

3. 难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - ) ]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节 教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三. 例习题的意图分析:

1. 教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2. 教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五. 例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1. 题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2. 在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3. 方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六. 随堂练习:

1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数 1 2 3 4 5

段巍 13 14 13 12 13

金志强 10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.段巍的成绩比金志强的成绩要稳定。

七. 课后练习:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S ,所以确定 去参加比赛。

3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4. 小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

选择小兵参加比赛。

初二数学教案模板ppt篇3

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用

难点:理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2

例2、用完全平方公式计算:

(1)1022(2)992

初二数学教案模板ppt篇4

一、学习目标:1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算.

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式.

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x-1)(2)(m+2)(m-2)

(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

计算:

(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

第三十五学时:4.2.2.完全平方公式(一)

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用

难点:理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2

例2、用完全平方公式计算:

(1)1022(2)992

随堂练习

第三十六学时:14.2.2完全平方公式(二)

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重点:理解添括号法则,进一步熟悉乘法公式的合理利用

难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

2.判断下列运算是否正确.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

初二数学教案模板ppt篇5

课题:一元二次方程实数根错例剖析课

【教学目的】精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1下列方程中两实数根之和为2的方程是()

(A)x2+2x+3=0(B)x2-2x+3=0(c)x2-2x-3=0(D)x2+2x+3=0

错答:B

正解:C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2若关于x的方程x2+2(k+2)x+k2=0两个实数根之和大于-4,则k的取值范围是()

(A)k>-1(B)k<0(c)-1<k<0(D)-1≤k<0

错解:B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20__广西中考题)已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。

错解:由△=(-2)2-4(1-2k)(-1)=-4k+8>0得k<2又∵k+1≥0∴k≥-1。即k的取值范围是-1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。

正解:-1≤k<2且k≠

例4(20__山东太原中考题)已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2=-(2m+1),x1x2=m2+1,

∵x12+x22=(x1+x2)2-2x1x2

=[-(2m+1)]2-2(m2+1)

=2m2+4m-1

又∵x12+x22=15

∴2m2+4m-1=15

∴m1=-4m2=2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m=-4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1=-19<0,方程无实数根,不符合题意。

正解:m=2

例5若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1)=16m+20

∵△≥0

∴16m+20≥0,

∴m≥-5/4

又∵m2-1≠0,

∴m≠±1

∴m的取值范围是m≠±1且m≥-

错因剖析:此题只说(m2-1)x2-2(m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6已知二次方程x2+3x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x=-3±,舍去;令a=2,则x1=-1、x2=-2

∴方程的整数根是x1=-1,x2=-2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0,x4=-3

正解:方程的整数根是x1=-1,x2=-2,x3=0,x4=-3

【练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4k2>0解得k<

∴当k<时,方程有两个不相等的实数根。

(2)存在。

如果方程的两实数根x1、x2互为相反数,则x1+x2=-=0,得k=。经检验k=是方程-的解。

∴当k=时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。

(2)k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0∴a≥-4

∴当a≥-4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=->0;

x1.x2=->0解得:a<0

综上所述,当a=0、a≥-4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x+m=0一定有一个或两个实数根。

考题汇编

1、(20__年广东省中考题)设x1、x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20__年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20__年广东省中考题)已知关于x的方程x2+2(m-2)x+m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20__年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

初二数学教案模板ppt篇6

教学目标

1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点

重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程

(一)复习引入

1、判断下列说法是否正确

(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();

(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();

(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),

若(x+3)(x-6)=0,则x+3=0或x-6=0();

(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),

若(x+3)(x-6)=1,则x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;

若x2=2,则x=。

答案:平方根,±,±2,±。

(二)创设情境

前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

给出1.1节问题一中的方程:(35-2x)2-900=0。

问:怎样将这个方程“降次”为一元一次方程?

(三)探究新知

让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。

(四)讲解例题

展示课本P.7例1,例2。

按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。

引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。

因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。

直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。

(五)应用新知

课本P.8,练习。

(六)课堂小结

1、解一元二次方程的基本思路是什么?

2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?

3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?

(七)思考与拓展

不解方程,你能说出下列方程根的情况吗?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根

通过解答这个问题,使学生明确一元二次方程的解有三种情况。

布置作业

初二数学教案模板ppt篇7

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;

(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;

(2)(m+4n)2;

(3)(a+b)2;

(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:

(1)m2-8mn+16n2

(2)m2+8mn+16n2;

(3)a2+2ab+b2;

(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;

(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。

三、随堂练习,巩固深化

课本P170练习第1、2题。

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值。

(1)x2+y2;

(2)(x-y)2

2.已知x+=-3,求x4+的值。

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2。

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。

五、布置作业,专题突破

初二数学教案模板ppt篇8

教学目标:

⑴、知识与能力:

①、能通过函数图象获取信息,发展形象思维。

②、能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

⑵、过程与方法:

①、在亲身的经历与实践探索过程中体会数学问题解决的办法。

②、初步体会方程与函数的关系,建立良好的知识联系。

⑶、情感态度与价值观:

①、进一步体会数学知识与现实生活的密切联系,丰富数学情感。

②、树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

3、教学重点、难点及其确立的依据:

由于应用函数图象解决问题的关键是要很好地对给出的图象进行解读,将数学语言与生活语言进行互相转化,从图象中去获取信息,发现存在的已知条件进而去解决相应的数学问题。同时又考虑到一次函数图象的应用是学生在初中阶段所接触到的第一类函数图象的应用性问题,因此要求又不应过高,进而确立了本节课的重点;在难点问题的确立上,考虑到学生在学习中往往只注重当堂课的内容,而忽略知识之间的联系,特别是“数形结合”的学习意识还很淡薄,独立探索学习发现问题的能力还比较低,例如“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”学生就很难独立去发现,必须由教师进行引导发现,基于以上原因,进而确立了本节课的教学难点。具体为:

1、教学重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

2、教学难点:体会函数与方程的关系,发展“数形结合”的思想。

二、学情状况分析:

1、学生现状:

针对自己对学生在学习过程中的了解情况,特别是在第六章《一次函数》前四节课内容的学习情况,分析当前学生现状如下:

⑴、学生们整体性的学习目的较为明确,在学习上有强烈的求知欲望。

⑵、学生整体上知识功底较好,在数学问题的解决上已初步形成了一定的方法。

⑶、学生们具有探索精神和实践的意识,在学习活动中有主动质疑的意识,有批判意识。敢于表达自己的观点和想法。

⑷、善于在亲身的经历体验中去获取数学的新知识,但在数学说理和数学证明上尚不规范,欠缺相应的经验。

2、知识情况:

本节课的核心任务是组织学生通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。使学生体会到数学学习过程中“数形结合”思想的重要性。

3、预期效果:

学生在利用一次函数图象解决简单的问题上不会有太大的困难,因为在第五章《位置的确定》中有关平面直角坐标系及第六章前四节的学习中,学生在知识储备上已完全具备。而在相关经验上他们在七年级下学期第六章《变量之间的关系》一章中也早有所获得。但在“数形结合”、“数形转化”以及用数学语言规范答题甚至包括探索一元一次方程与一次函数之间关系方面会有一些困难。

另外,本节课的教学时间会十分紧张,自己在具体的课堂教学实践中将适时把握,恰当处理,以期达到效果。

三、教学方法及策略:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1、教学方法:

根据本节课的特点、目标要求及学生的实际情况,在教学方法上主要采用引导观察启发,组织实践探索交流、提问引导探索发现等方法进行本节课的教学活动。

2、教学的理论依据及教学策略

首先《数学课程标准》中明确要求在知识传授的同时,更要注重学生学习活动的过程以及相应的情感态度。将抽象的数学问题进行形象化、生活化是当前新一轮基础教育课程改革下所积极倡导的。因此紧密联系学生的生活经历和经验开展本节课的教学内容十分必要。将学生放在课堂教学的主体位置上,自己成为课堂的组织者、引导者并最终成为与学生的合作者是自己在本节课教学中的一个主导思想。

其次,数学作为基础性的自然学科,很多知识的获取必须通过耐心细致的观察,特别是本节课,主要是通过一次函数的图象去获取信息(已知条件)进而去解决问题,因此引导学生进行大量细致的观察活动是十分必要的,这也是对学生一种良好学习习惯的培养。实践是验证结论的办法,所以本节课还特别安排学生进行了相应的实践验证活动,但数学实践并不一定是具体的实物操作,完全可以利用教材、多媒体网络资源开展,本节课就是如此。

再次,充分引导组织学生参与学习活动中来,就必须要开展学生之间、师生之间的交流讨论与互动活动,因此本节课安排了一定的相关活动,使学生充分融入到学习活动中来。体现并凸现学生参与学习活动的过程。同时,探索发现新的结论是数学学科一重大特点,为了解决难点问题,在进行“一次函数图象与横坐标轴交点的横坐标与一元一次方程的解的关系”这一问题的教学时,充分引导学生开展大胆质疑、主动探索、发现结论、解决问题、树立成就感等一系列活动,难点问题解决的同时,也培养了学生创新精神,也可以在某种程度上培养学生主动学习的探索意识。

本节课自己将充分依据《数学课程标准》中所倡导的教师角色,即在课堂教学中真正意义上地成为学生学习活动过程中的组织者、引导者和合作者。充分与学生开展互动活动,与他们共同质疑、共同困惑、共同寻求解决问题的办法。同时在组织学生进行实践的过程中引导学生积极开展交流讨论活动,实现生生间的互动。同时,对教材内容进行一定的创造性使用,以达到更佳的效果。

3、学习方法:

本节课在对学生进行学法指导上,主要是要求和引导学生采用实践探索的方法,进而培养学生数学学习的良好习惯,渗透终身学习的意识,培养学生们的创新精神,使他们体会到数学问题解决的严密性和规范性。指导学生对一次函数的图象进行耐心细致的观察,使学生充分意识到细致的观察、审清题意是应用一次函数图象解决问题的基础和关键,通过范例使学生亲身体会到明确函数图象中两坐标轴所表示的实际意义是解决此类问题的关键。通过该方法的学习培养,帮助学生积累学习方法的同时,也使他们养成耐心细致的学习习惯。交流讨论与合作关系是本节课学生学习活动过程中的重点,通过该学习方法,使学生们充分意识到在数学学习中要互相帮助、互相促进,体会到团队的力量大与个人力量。引导学生主动探索发现新的数学结论是本节课学生学习方法的另一个重要的方面,可以使学生敢于发表自己的独到观点和想法,在函数与方程的关系的学习中,在自己的引导启发下,充分尊重学生的观点及想法,通过实践验证,发现新结论,进而培养学生主动探索新知识,发现新问题的终身学习意识。同时也可以帮助学生树立起获取新知识后的成就感,增强数学学习的信心和兴趣。

初二数学教案模板ppt篇9

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

初二数学教案模板ppt篇10

学习重点:函数的概念及确定自变量的取值范围。

学习难点:认识函数,领会函数的意义。

【自主复习知识准备】

请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

【自主探究知识应用】

请看书72——74页内容,完成下列问题:

1、思考书中第72页的问题,归纳出变量之间的关系。

2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

3、归纳出函数的定义,明确函数定义中必须要满足的条件。

归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

补充小结:

(1)函数的定义:

(2)必须是一个变化过程;

(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。

三、巩固与拓展:

例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

(1)写出表示y与x的函数关系式.

(2)指出自变量x的取值范围.

(3)汽车行驶200千米时,油箱中还有多少汽油?

【当堂检测知识升华】

1、判断下列变量之间是不是函数关系:

(1)长方形的宽一定时,其长与面积;

(2)等腰三角形的底边长与面积;

(3)某人的年龄与身高;

2、写出下列函数的解析式.

(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

(2)汽车加油时,加油枪的流量为10L/min.

①如果加油前,油箱里还有5L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.

(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

初二数学教案模板ppt篇11

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0B.1C.2D.3

活动2探究新知

根据题意列方程.

1.教材第2页问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4例题与练习

例1在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2教材第3页例题.

例3以-2为根的一元二次方程是()

A.x2+2x-1=0B.x2-x-2=0

C.x2+x+2=0D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页习题21.1第1~7题.

初二数学教案模板ppt篇12

教学目标:1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则

重点:异号两数相加的法则

教学过程:

二、讲授新课

1、同号两数相加的法则

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识

课本P18例1,例2、课本P118练习1、2题

四、总结

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业

课本P24习题1.3第1、7题。

初二数学教案模板ppt篇13

教学目标

1.知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。

2.会运用梯形的有关概念和性质进行有关问题的论证和计算。

3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。

教学模式问题解决教学

教学过程

想一想:

什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:

画一画:

画一个梯形,并指出梯形的上、下底,画出梯形的高。

问题教学

问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)

问题2:如图4.9-1,在(1)中:四边形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四边形ABCD的AD∥BC,ABCD,且AB=CD。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中CD⊥BC,那么CD⊥AD吗?(CD⊥AD,且指出:CD就是直角梯形的高)当CD⊥BC时,另一腰AB可以垂直BC吗?为什么?(若AB⊥BC,那么四边形ABCD就成为矩形了,不再是梯形。)在图(2)中,上底AD与下底BC能相等吗?(不能,否则四边形ABCD成为平行四边形,不再是梯形。)

练一练:课本例1后练习第l、2题。

问题3:观察图4.9-2中的等腰梯形ABCD,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?

说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作AE⊥BC,DF⊥BC)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。

问题4:如何证明等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰BA、CD相交于点E,易证△AED和△EBC都是等腰三角形。EF⊥BC,则EF⊥AD,EF所在的直线是两个等腰三角形EAD、EBC的对称轴。由轴对称图形可知,也是等腰梯形ABCD的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)

例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。

课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在Rt△AGD中求出高DG=4cm。)

初二数学教案模板ppt篇14

一、复习引入

(学生活动)解下列方程:

(1)x2-4x+7=0(2)2x2-8x+1=0

老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.

解:略.(2)与(1)有何关联?

二、探索新知

讨论:配方法解一元二次方程的一般步骤:

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

例1解下列方程:

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.

解:略.

三、巩固练习

教材第9页练习2.(3)(4)(5)(6).

四、课堂小结

本节课应掌握:

1.配方法的概念及用配方法解一元二次方程的步骤.

2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.

五、作业布置

教材第17页

初二数学教案模板ppt篇15

学习目标:

1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;

2、能熟练应用平行线的性质公理及定理。

二、试一试

自学指导:平行线性质公理:两直线平行,同位角相等

1、思考下列各题,你能利用平行线性质公理解决它们吗?

2、充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。

(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2

由此得平行线性质定理1:

(2)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°

由此得平行线性质定理2:

三、练一练

1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b

(1)求证:a∥c

(2)请将(1)题证得的结论用一句话总结出来

2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。

五、记一记

1、两直线平行的性质公理及两个性质定理;

2、平行线的性质补充结论

(1)垂直于两平行线之一的直线必垂直于另一条直线

(2)夹在两平行线之间的平行线段相等;

(3)两条平行线间的距离处处相等;

(4)经过直线外一点,有且只有一条直线和已知直线平行;

(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补

B组:请在补充结论中选择你感兴趣的进行证明:

初二数学教案模板ppt篇16

教材分析

1.本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

学情分析

1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

教学目标

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

教学重点和难点

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

初二数学教案模板ppt篇17

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的.划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

五、教学设计:

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思:

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初二数学教案模板ppt篇18

一、读一读

学习目标:1、掌握三角形内角和定理的两个推论及其证明;

2、体会几何中简单不等关系的证明;

3、从内和外、相等和不相等的不同角度对三角形的角作更全面的思考。

二、试一试

自学指导:

1、如图∠1是三角形的一个外角,它与图中其它角有什么关系?

2、自学教材P242-243,看看你的结论是否正确,并对例1例2进行学习,

仿照证明三角形内角和定理的两个推论:

推论1:三角形的一个外角等于和它不相邻的两个内角的和。

推论2:三角形的一个外角大于任何一个和它不相邻的内角。

证明:

三、练一练

1、如图,下列哪些说法一定正确

A∠HEC>∠B

B∠B+∠ACB=180°—∠A

C∠B+∠ACB<180°

D∠B>∠ACD

2、已知:如图,在△ABC中,∠A=45°,外角∠DCA=100°,

求∠B和∠ACB的大小

初二数学教案模板ppt篇19

一、教学目标:

1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

2、能力目标:

①,在实践操作过程中,逐步探索图形之间的平移关系;

②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

二、重点与难点:

重点:图形连续变化的特点;

难点:图形的划分。

三、教学方法:

讲练结合。使用多媒体课件辅助教学。

四、教具准备:

多媒体、磁性板,若干小正六边形,“工”字的&39;砖,组合图形。

五、教学设计:

创设情景,探究新知:

(演示课件):教材上小狗的图案。提问:

(1)这个图案有什么特点?

(2)它可以通过什么“基本图案”,经过怎样的平移而形成?

(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

小组讨论,派代表回答。(答案可以多种)

让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

小组讨论,派代表到台上给大家讲解。

气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

畅所欲言,互相补充。

课堂小结:

在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

课堂练习:

小组讨论。

小组讨论完成。

例子一定要和大家接触紧密、典型。

答案不惟一,对于每种答案,教师都要给予充分的肯定。

六、教学反思:

本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初二数学教案模板ppt篇20

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用.

(2)了解完全平方公式的几何背景.

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

(2)发展学生的数形结合的数学思想.

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2–4a+22

活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

第三环节:推广到一般情况,形成公式

活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义.

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央.

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9

②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+

活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

第八环节:随堂练习

活动内容:计算:①;②;③(n+1)2–n2

活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

第九环节:学生PK

活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

第十环节:学生反思

活动内容:通过今天这堂课的学习,你有哪些收获?

收获1:认识了完全平方公式,并能简单应用;

收获2:了解了两数和与两数差的完全平方公式之间的差异;

收获3:感受到数形结合的数学思想在数学中的作用.

活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

第十一环节:布置作业:

课本P43习题1.13

15067