教案吧 > 初中教案 > 八年级教案 >

人教版八年级上册数学教案

时间: 新华 八年级教案

编写教案的目的在于帮助教师更好地组织教学内容、规划教学流程、提高教学质量、增强教学自信心。优秀的人教版八年级上册数学教案是什么样的?下面给大家带来人教版八年级上册数学教案,供大家参考。

人教版八年级上册数学教案篇1

课题

探索多边形内角和

教学目标

知识目标

1、探索多边形内角和定义、公式

2、正多边形定义

能力目标

1、发展学生的合情推理意识、主动探索的习惯

2、发展学生的说理能力和简单的推理意识及能力

德育目标

培养用多边形美花生活的意识

教学重点

多边形内角和公式的推导

学难点

多边形内角和公式的简单运用

教学方法

探索、讨论、启发、讲授

教学手段

利用学生剪纸、投影仪进行教学

教学过程:

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

二、多边形内角和公式:

1、三角形的内角和是多少度?任意四边形的内角和是多少度?怎样得到的?那么五边形的内角和怎样求呢?要求学生剪纸或画图找出五边形可剪成多少个三角形求内角和?六边形可怎样剪成三角形?n边形呢?

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(2)从五边形的任一顶点出发,连结不相邻的两个顶点,将五边形分割成三个三角形,得出五边形内角和为540°(如图一);

(3)在五边形内任取一点,连结各顶点,将五边形分割成五个三角形,得出五边形内角和为5×180°—360°=540°(如图二);

(4)从五边形任意一边上取一点,连接不相邻的顶点,将五边形分割成四个三角形内角和为4×180°—180°=540°(如图三);

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成()个三角形;

(3)过六边形一个顶点的对角线把六边形分成()个三角形。

(4)过n边形一个顶点的对角线把n边形分成()个三角形;

三、正多边形定义:

1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

正多边形的边数

3

4

5

6

8

n

正多边形的内角和

180°

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:

主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业:

课本P110、习题4、10第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140,它是()边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

4、一个多边形的每个内角都是140°,这个多边形是()边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

6、下列角能成为一个多边形的内角和的是()

A、270°B、560°C、1800°D、1900°

思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

人教版八年级上册数学教案篇2

教学目标:

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等。

2、能力目标:

(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用公理证明两个三角形全等。

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

教学用具:直尺、微机

教学方法:自学辅导式

教学过程:

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图。

(2)实验

让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作。

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一。

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

2、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结。

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上定出证明,一名学生板书。教师强调

证明格式:用大括号写出公理的三个条件,最后写出

结论。(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程。

(投影展示学生的.作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程。投影展示证明过程。

教师强调证明线段相等的几种常见方法。

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a书面作业P56#6、7

b上交作业P57B组1

思考题:

板书设计:

探究活动

人教版八年级上册数学教案篇3

教学目标:

1、知识与技能:进一步认识图形的对称轴,并能在方格纸上画出一个图形的轴对称图形。

2、过程与方法:通过观察,确定对称点的位置,探索图形成轴对称的特征和性质,

3、情感、态度、价值观:让学生感受生活中轴对称的美感,知道大自然中,处处有数学。

教学重点:

认识图形的对称轴,并能画出轴对称图形。

教学难点:

确定对称点的位置

教学准备:

多媒体课件

教学方法:

观察法、讲解法,合作交流法、探究法。

教学过程:

一、创设情境

出示轴对称图片

师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形)

二、复习旧知

1、你还见过哪些轴对称图形?

2、什么样的图形是轴对称图形?

3、看书中图片,画出对称轴。

三、探究新知

1、出示例1看一看,数一数,你发现了什么?(引导学生观察)

(1)合作探究

①这幅图对称吗?

②中间这一条直线表示什么?

③点A和点A在这幅图中是两个对应点,它们到对称轴的距离都是()个小格。

④点B和点()是对应点,它们到对称轴的距离都是()个小格。

⑤点C和点()是对应点,它们到对称轴的距离都是()个小格。

⑥我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离()。

(2)汇报交流

①在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

②我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。

2、出示例2

(1)引导学生思考

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

(2)在思考的基础上,用铅笔试画。

(3)小结

①找出所给图形的关键点。

②数出或量出图形关键点到对称轴的距离。

③在对称轴的另一侧找出关键点的对称点。

④按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

四、课堂练习

P84做一做第2题

五、课堂小结

这节课你有什么收获?

1、在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

2、我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。

板书设计:

图形运动(二)轴对称(1)

方格纸上画已知图形的轴对称图形的方法

1.找出所给图形的关键点。

2.数出或量出图形关键点到对称轴的距离。

3.在对称轴的另一侧找出关键点的对称点。

4.按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

教学反思:

本节课先从具有轴对称特征的图形入手,认识轴对称图形,引导学生总结出轴对称图形的定义,然后通过作松树图形来找出轴对称图形的特点和性质,让学生自己亲身经历其过程,加深对轴对称图形的理解。

人教版八年级上册数学教案篇4

【教学目标】

1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2.继续培养学生画图、实验,发现新知识的能力.

【重点难点】

1.难点:让学生掌握边边边公理的内容和运用公理的自觉性;

2.重点:灵活运用SSS判定两个三角形是否全等.

【教学过程】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何判定的.

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)

上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段,分别为,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.

步骤:

(1)画一线段AB使它的长度等于c(4.8cm).

(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

(3)连结AC、BC.

△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的`结论

请你结合画图、对比,说说你发现了什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是全等的.这样我们就得到判定三角形全等的一种简便的方法:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为(S.S.S.).

2、问题2:你能用相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

4、范例:

例1如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因为AC是公共边,由(S.S.S.)全等判定法,可知△ABC≌△CDA

5、练习:

6、试一试:已知一个三角形的三个内角分别为、、,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

(所画出的三角形都是相似的,但大小不一定相同).

三个对应角相等的两个三角形不一定全等.

三、加强练习,巩固知识

1、如图,,,△ABC≌△DCB全等吗?为什么?

2、如图,AD是△ABC的中线,.与相等吗?请说明理由.

四、小结

本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用(SSS)来判定三角形全等.三个角对应相等的两个三角不一定会全等.

五、作业

人教版八年级上册数学教案篇5

一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

七、教学步骤

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9,求的度数(打出投影).

【引入新课】

前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.

【讲解新课】

1.四边形的外角

与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.

2.外角和定理

例1已知:如图4-11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

求.

(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

(2)教给学生一组外角的画法——同向法.

即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

外角和定理:四边形的外角和等于360°

3.四边形的不稳定性

①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

(学生回答)

②若以为边作四边形ABCD.

提示画法:①画任意小于平角的.

②在的两边上截取.

③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

④连结AD、CD,四边形ABCD是所求作的四边形,如图4-13.

大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.

【总结、扩展】

1.小结:

(1)四边形外角概念、外角和定理.

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

2.扩展:如图4-15,在四边形ABCD中,,求四边形ABCD的面积

八、布置作业

教材P128中4.

九、板书设计

十、随堂练习

教材P124中1、2

补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

(2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.

人教版八年级上册数学教案篇6

教学目标

1。通过实际操作理解“学习三角形全等的四种判定方法”的必要性。

2。比较熟练地掌握应用边角边公理时寻找非已知条件的方法和证明的分析法,初步培养学生的逻辑推理能力。

3。初步掌握“利用三角形全等来证明线段相等或角相等或直线的平行、垂直关系等”的方法。

4。掌握证明三角形全等问题的规范书写格式。

教学重点和难点

应用三角形的边角边公理证明问题的分析方法和书写格式。

教学过程设计

一、实例演示,发现公理

1。教师出示几对三角形模板,让学生观察有几对全等三角形,并根据所学过的全等三角形的知识动手操作,加以验证,同时写出全等三角形的数学表达式。

2。在此过程当中应启发学生注意以下几点:

(1)可用移动三角形使其重合的方法验证图3-49中的三对三角形分别全等,并根据图中已知的三对对应元素分别相等的条件,可以证明结论成立。如图3-49(c)中,由AB=AC=3cm,可将△ABC绕A点转到B与C重合;由于∠BAD=∠CAE=120°,保证AD能与AE重合;由AD=AE=5cm,可得到D与E重合。因此△BAD可与△CAE重合,说明△BAD≌△CAE。

(2)每次判断全等,若都根据定义检查是否重合是不便操作的,需要寻找更实用的判断方法——用全等三角形的性质来判定。

(3)由以上过程可以说明,判定两个三角形全等,不必判断三条边、三个角共六对对应元素均相等,而是可以简化到特定的三个条件,引导学生归纳出:有两边和它们的夹角对应相等的两个三角形全等。

3。画图加以巩固。

教师照课本上所叙述的过程带领学生分析画图步骤并画出图形,理解“已知两边及夹角画三角形”的方法,并加深对结论的印象。

二、提出公理

1。板书边角边公理,指出它可简记为“边角边”或“SAS”,说明记号“SAS’的含义。

2。强调以下两点:

(1)使用条件:三角形的两边及夹角分别对应相等。

(2)使用时记号“SAS”和条件都按边、夹角、边的顺序排列,并将对应顶点的字母顺序写在对应位置上。

3。板书定理证明应使用标准图形、文字及数学表达式,正确书写证明过程。

如图3-50,在△ABC与△A’B’C’中,(指明范围)

三、应用举例、变式练习

1。充分发挥一道例题的作用,将条件、结论加以变化,进行变式练习,

例1已知:如图3-51,AB=CB,∠ABD=∠CBD。求证:△ABD≌△CBD。

分析:将已知条件与边角边公理对比可以发现,只需再有一组对应边相等即可,这可由公共边相等BD=BD得到。

说明:(1)证明全等缺条件时,从图形本身挖掘隐含条件,如公共边相等、公共角相等、对顶角相等,等等。

(2)学习从结论出发分析证明思路的方法(分析法)。

分析:△ABD≌△CBD

因此只能在两个等角分别所在的三角形中寻找与AB,CB夹两已知角的公共边BD。

(3)可将此题做条种变式练习:

练习1(改变结论)如图3-51,已知AB=CB,∠ABD=∠CBD。求证:AD=CD,BD平分∠ADC。

分析:在证毕全等的基础上,可继续利用全等三角形的性质得出对应边相等,即AD=CD;对应角相等∠ADB=∠CDB,即BD平分∠ADC。因此,通过证明两三角形全等可证明两个三角形中的线段相等或和角相关的结论,如两直线平行、垂直、角平分线等等。

练习2(改变条件)如图3-51,已知BD平分∠ABC,AB=CB。求证:∠A=∠C。

分析:能直接使用的证明三角形全等的条件只有AB=CB,所缺的其余条件分别由公共边相等、角平分线的.定义得出。这样,在证明三角形全等之前需做一些准备工作。教师板书完整证明过程如下:

以上四步是证明两三角形全等的基本证明格式。

(4)将题目中的图形加以有规律地图形变换,可得到相关的一组变式练习,使刚才的解题思路得以充分地实施,并加强例题、习题之间的有机联系,熟悉常见图形,同时让学生总结常用的寻找所缺边、缺角条件的方法。

练习3如图3-52(c),已知AB=AE,AD=AF,∠1=∠2。求证:DB=FE。

分析:关键由∠1=∠2,利用等量公理证出∠BAD=∠EAF。

练习4如图3-52(d),已知A为BC中点,AE//BD,AE=BD。求证:AD//CE。

分析:由中点定义得出AB=AC;由AE//BD及平行线性质得出∠ABD=∠CAE。

练习5已知:如图3-52(e),AE//BD,AE=DB。求证:AB//DE。

分析:由AE//BD及平行线性质得出∠ADB=∠DAE;由公共边AD=DA及已知证明全等。

练习6已知:如图3-52(f),AE//BD,AE=DB。求证:AB//DE,AB=DE。

分析:通过添加辅助线——连结AD,构造两个三角形去证明全等。

练习7已知:如图3-52(g),BA=EF,DF=CA,∠EFD=∠CAB。求证:∠B=∠E。

分析:由DF=CA及等量公理得出DA=CF;由∠EFD=∠CAB及“等角的补角相等”得出∠BAD=∠EFC。

练习8已知:如图3-52(h),BE和CD交于A,且A为BE中点,EC⊥CD于C,BD⊥CD于D,CE=⊥BD。求证:AC=AD。

分析:由于目前只有边角边公理,因此,必须将角的隐含条件——对顶角相等转化为已知两边的夹角∠B=∠E,这点利用“等角的余角相等”可以实现。

练习9已知如图3-52(i),点C,F,A,D在同一直线上,AC=FD,CE=DB,EC⊥CD,BD⊥CD,垂足分别为C和D。求证:EF//AB。

在下一课时中,可在图中连结EA及BF,进一步统习证明两次全等。

小结:在以上例1及它的九种变式练习中,可让学生归纳概括出目前常用的证明三角形全等时寻找非已知条件的途径。

缺边时:①图中隐含公共边;②中点概念;③等量公理④其它。

缺角时:①图中隐含公共角;②图中隐含对顶角;③三角形内角和及推论④角平分线定义;

⑤平行线的性质;⑥同(等)角的补(余)角相等;⑦等量公理;⑧其它。

例2已知:如图3-53,△ABE和△ACD均为等边三角形。求证:BD=EC。

分析:先选择BD和EC所在的两个三角形△ABD与△AEC,已知没有提供任一证两个三角形全等所需的直接条件,均需由等边三角形的定义提供。

四、师生共同归纳小结

1。证明两三角形全等的条件可由定义的六条件减弱到至少几个?边角边公理是哪三个

条件?

2。在遇到证明两三角形全等或用全等证明线段、角的大小关系时,最典型的分析问题的思路是怎样的?你体会这样做有些什么优点?

3。遇到证明两个三角形全等而边、角的直接条件不够时,可从哪些角度入手寻找非已知条件?

五、练习与作业

练习:课本第28页中第1题,第30页中1,3题。

作业:课本第32页中第6,7,8,9,10题。

课堂教学设计说明

本教学设计需2课时完成。

1。课本第3。5节内容安排3课时,前两课时学习三角形全等的边角边公理,重点练习直接应用公理及证明格式,初步学习寻找证明全等所需的非已知条件的方法,以及利用性质证明边角的数量关系及直线的位置关系,第3课时加以巩固并学习解决应用题和两次全等的问题。

2。本节将“理解全等三角形的判定方法的必要性“列为教学目标之一,目的是引起教师和学生的重视,只有学生真正认识到了研究判定方法的必要性,才能从思想上接受判定方法,并发挥出他们的学习主动性。

3。本节课将“分析法和寻找证明全等三角形时非已知条件的方法”作为教学目标之一,意在给学生归纳一些常用的解题思路,以便将它作为证明全等三角形的一种技能加以强化。

4。教材中将“利用证明两个三角形全等来证明线段或角相等”的方法做为例5出现,为时过晚,达不到训练的目的,因此教师应提前到第一、二课时,就教给学生分析的方法,并从各种角度加以训练。

5。教师可将例题1和几种变式练习制成投作影片(图3-52)提高课堂教学效率。教学使用时,重点放在题目的分析上,并体现出题目之间图形的变化和内在联系。

6。本节教学内容的两课时既教会学生分析全等问题的思路——分析法和寻找非已知条件的方法,又要求他们落实证明的规范步骤——准备条件,指明范围,列齐条件和得出结论,使学生遇到证明三角形全等的题目既会快速分析,又会正确表达。学生学生遇到证明三角形全等的题目既会快速分析,又会正确表达。节教学

人教版八年级上册数学教案篇7

教学目标:

1.通过生活中的事例,使学生初步体会什么是轴对称图形。

2.让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。

3.让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。

教学重点:

1.了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。

2.能正确判断轴对称图形。

教学难点:

画出轴对称图形。

教学准备:

课件剪刀彩色卡纸平行四边形纸

一、情境导入

1.谈话:看到同学们一张张可爱的笑脸,老师非常开心。

课件出示不对称“脸图”问:“这张脸可爱吗?”

生:不可爱!

课件演示脸图由不对称变为对称,问:现在呢?

生:可爱!

师:看来,人人都喜欢美丽的东西。今天老师给大家带来了一些美丽的图片,请欣赏。

2.图片欣赏(课件出示对称图形图片)

看完图片后师问:这些图片中的图形有什么特点?(指名回答)

学生可能会说,它们两边完全一样。

教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)

二、探究新知

1.认识轴对称图形

师:在我们的生活中,还有很多事物都是对称的。

看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)

生:想!

师:老师和你们来一场比赛,看谁剪的又快又好,开始!

师生同时动手剪,完成后教师把自己剪的贴在黑板上。

请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。(指导学生演示方法)

问演示学生:你怎么让大家知道你剪的小松树是对称的呢?

生:我把它对折(生边说边演示)(师板书:对折)

师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?

生:左右两边完全重合(师板书:完全重合)

师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。(出示概念,补充课题:轴对称

图形)

生齐读概念

2.认识对称轴

师:把你们的对称图形打开,观察图形中间有什么?

生:有一条直直的折痕。

师:这条折痕所在的这条直线叫做对称轴(板书:对称轴)

出示感念,生齐读。

师演示并带领学生画对称轴(强调用虚线)

我们认识了新朋友轴对称图形,现在这位新朋友在和我们玩捉迷藏呢!

三、实际应用

1.看一看,说一说,下面哪些图形是轴对称图形?(课件出示课本13页图)

生应用所学知识判断,教师点评。

师:这位新朋友留给大家的印象非常深刻,我们很容易就发现了它,你们能把这些对称图形的对称轴画出来吗?

生动手画对称轴,师巡视指导,完成后订正。

师:轴对称的图形不单单生活中有,在我们天天接触的数字、汉字、字母中也同样存在,看,这儿还有轴对称图形吗?

2.找出下列图形中的轴对称图形(课件出示课本14页第1题)

生找出轴对称图形,并说说每个图形的对称轴在哪儿。

师:聪明的同学们能找轴对称图形,聪明的你们会画轴对称图形吗?

3.出示课本14页第3题

师用第一个图演示讲解画轴对称图形的要点:一看对称轴;二找关键点;三定对应点;四画对称图。

生在剩下的两个图形中选择一个动手画,完成后展示成果,全班点评。师:同学们既能找,也能画,那肯定也能判断了。请看(课件出示)

4.下面哪些图形中的红线是对称轴?

师:看来同学们已经知道了很多轴对称图形

(出示导课时的“脸图”可爱的笑脸也是轴对称图形,你们有没有发现我们的身边还有许多的轴对称事物呀?)

生找身边的轴对称事物。

四、全课小结

我们身边轴对称的事物还有很多,轴对称的图形是美丽的,漂亮的,请同学们谈谈通过这节课的学学习,你有什么收获?

生:畅谈收获。

师:你们想知道老师有什么收获吗?(想)

老师今天收获了一份愉快的心情!

板书设计:

完全

轴对称图形对称轴重合

人教版八年级上册数学教案篇8

一、素质教育目标

(一)知识教学点

1.使学生把握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力练习点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生熟悉到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的爱好.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具预备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第一课时

七、教学步骤

复习引入

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的.关系,并运用有关四边形的知识解决一些新问题.

引入新课

用投影仪打出课前画好的教材中p119的图.

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

讲解新课

1.四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形.

(2)要与三角形类比.

(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.

(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

2.四边形内角和定理

教师问:

(1)在图4-3中对角线ac把四边形abcd分成几个三角形?

(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?

(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.

我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.

例1已知:如图4—8,直线于b、于c.

求证:(1);(2)。

本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出.

总结、扩展

1.四边形的有关概念.

2.四边形对角线的作用.

3.四边形内角和定理.

八、布置作业

教材p128中1(1)、2、3.

九、板书设计

四边形有关概念

四边形内角和

例1

十、随堂练习

教材p122中1、2、3.

人教版八年级上册数学教案篇9

一、教学任务分析

1、教学目标定位

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

人教版八年级上册数学教案篇10

教学目标:

1、进一步巩固因式分解的概念;

2、巩固因式分解常用的三种方法

3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题

5、体验应用知识解决问题的乐趣

教学重点:

灵活运用因式分解解决问题

教学难点:

灵活运用恰当的因式分解的方法,拓展练习2、3

教学过程:

一、创设情景:若a=101,b=99,求a2—b2的值

利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

二、知识回顾

1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。

判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法

(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解

(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解

(7)、2πR+2πr=2π(R+r)因式分解

2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。

分解因式要注意以下几点:

(1)分解的对象必须是多项式。

(2)分解的结果一定是几个整式的乘积的形式。

(3)要分解到不能分解为止。

3、因式分解的方法

提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法

公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2

4、强化训练

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

试一试把下列各式因式分解:

(1)1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2

(3)4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)

三、例题讲解

例1、分解因式

(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)

(3)(4)y2+y+

例2、分解因式

1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=

4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=

例3、分解因式

1、72—2(13x—7)22、8a2b2—2a4b—8b3

四、知识应用

1、(4x2—9y2)÷(2x+3y)

2、(a2b—ab2)÷(b—a)

3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2

4、若x=—3,求20x2—60x的.值。

5、1993—199能被200整除吗?还能被哪些整数整除?

五、拓展应用

1、计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)

2、20_2+20_被20_整除吗?

3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。

五、课堂小结

今天你对因式分解又有哪些新的认识?

人教版八年级上册数学教案篇11

一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第一课时

七、教学步骤

【复习引入】

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.

【引入新课】

用投影仪打出课前画好的教材中P119的图.

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

【讲解新课】

1.四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形.

(2)要与三角形类比.

(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点.我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

2.四边形内角和定理

教师问:

(1)在图4-3中对角线AC把四边形ABCD分成几个三角形?

(2)在图4-6中两条对角线AC和BD把四边形分成几个三角形?

(3)若在四边形ABCD如图4-7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形.

我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.

例1已知:如图4—8,直线于B、于C.

求证:(1);(2).

本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

【总结、扩展】

1.四边形的有关概念.

2.四边形对角线的作用.

3.四边形内角和定理.

八、布置作业

教材P128中1(1)、2、3.

九、板书设计

四边形有关概念

四边形内角和例1

十、随堂练习

教材P122中1、2、3.

人教版八年级上册数学教案篇12

整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

aman=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p=(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式:a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

人教版八年级上册数学教案篇13

教学目标:

1、通过实践活动,进一步加强对轴对称图形的认识,培养在实际生活中的创造性,提高数学学习的兴趣。

2、通过参与创作,合作交流,启迪灵感,感受生活。

3、通过欣赏剪纸作品,感受古今劳动人民的高超技艺,培养民族自豪感。

教学重、难点:

学习运用轴对称图形的特点创作美丽的图案。

教具准备:

实物投影仪、剪纸作品、剪刀、彩色纸片。

教学过程:

一、作品赏析

1、利用实物投影仪欣赏剪纸作品。

2、介绍:我国劳动人民创造出了中国民间艺术——剪纸,又叫做窗花。这古老的传统民间艺术有1000多年的历史了,风格独特,深受国内外人士的喜爱。今天,我们就来欣赏和学习制作剪纸。

3、问:你最喜欢刚才的哪一幅剪纸?

教师相机对部分作品进行解说。

二、作品分类

1、观察分析。

谈话:在民间艺人的创作中,这些剪纸使分不同种类的,那么你们能进行分类吗?

小组讨论,学生分类只要合理就予以充分肯定。比如:分为人物、动物、花草、文字等类别或以颜色分类。

小结:同学们观察得非常仔细,从创作内容上看可以分为这几类,我们还可以从创作的方法进行分类,比如有的剪纸图案是由以组或几组完全相同的图案组合而成的,大家来看看有哪些。

2、研究方法

引导观察:你们再来看现在这些作品,它们有什么共同的特点?

教师拿出其中以一次对折形式剪成的枫叶图案。问:这张剪纸是什么图案?你知道这样漂亮图案是怎样剪成的吗?

组织学生拿出工具进行剪纸。

三、作品创作

1、尝试创作(一次对折剪纸)

教师指导枫叶图案:

一次对折——沿外边画轮廓线——剪去轮廓线以外的部分。

同桌进行交流、评析,将优秀的作品贴在黑板上。

小结:剪纸时对折要整齐,画样要美观,用剪要稳当。

2、二次创作

出示P62下方的剪纸步骤。

提出要求:按照要求及顺序动手试一试,看谁做得好。

组内进行交流,选出优秀作品。

小结:我们通过学习剪纸,发现了很多方法,但基本都是每次只剪出了一幅图案,想一想,能不能一次剪出多幅图案呢?

P63长方形剪花边——叠剪图案

3、独立创作

谈话:剪纸的分类大体可以分成三大类:阳刻(剪去的轮廓线之外的空白部分,保留轮廓线)、阴刻(剪去轮廓线保留其他部分)、阴阳混刻。

要求:可以用对折的形式创作,也可以不用对折进行创作,对纸张的样式也不受限制,同学们以小组为单位,制作一幅或两幅作品。

四、全课总结

1、启发:同学们的作品样式繁多,都很美观,这些作品与我们以往完成的作品有什么区别?

规律:凡是对折后完成的剪纸作品都是轴对称图形,不对折而完成的图形却不是。

2、引导:为什么会出现这种情况?

原因:折痕就是图形(图案)的对称轴,折痕的两侧是能够完全重合的。

五、课后作业

利用轴对称图形的原理,制作完成一组“可爱的动物”的花边,装饰班级墙报。

人教版八年级上册数学教案篇14

课程内容

边边边判定定理

选用教材

人教版数学八年级上册

授课人

崔志伟

授课章节

第十二章第二节

学时

1

教学重点

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

教学方法

学生合作探究法、教师讲解结合谈话法等综合教学方法

教学手段

黑板板书教学

课堂教学设计

阶段

教学内容

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的&39;对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

人教版八年级上册数学教案篇15

教学目标

知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;

过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.

情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.

教学重点:多边形外角和定理的探索和应用.

教学难点:灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.

教学准备:多媒体课件

教学过程

第一环节创设情境,引入新课(5分钟,学生理解情境,思考问题)

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5的结果吗?你是怎样得到的?

第二环节问题解决(10分钟,小组讨论,合作探究)

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

这样,∠1+∠2+∠3+∠4+∠5=360°

问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗?

2.如果广场的形状是八边形呢?

第三环节探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。

探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;

方法Ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。

结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?

(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?

第四环节巩固练习(10分钟,学生利用知识独立解决问题)

例1一个多边形的内角和等于它的外角和的3倍,它是几边形?

随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形?

2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?

挑战自我:

1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?

挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。

第五环节课时小结(3分钟,学生加深记忆)

多边形的外角及外角和的定义;

多边形的外角和等于360°;

在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.

第六环节布置作业:

习题4.11

A组(优等生)第1,2,3题

B组(中等生)1、2

C组(后三分之一生)1

16300