教案吧 > 初中教案 > 八年级教案 >

初二数学教案模板表格

时间: 新华 八年级教案

教案可以帮助教师评估学生的学习效果和进步情况,从而更好地调整教学策略,提高教学质量和效率。那要怎么写初二数学教案模板表格呢?这里提供一些初二数学教案模板表格,希望对大家能有所帮助。

初二数学教案模板表格篇1

第三十四学时:14.2.1平方差公式

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的&39;和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

初二数学教案模板表格篇2

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0B.1C.2D.3

活动2探究新知

根据题意列方程.

1.教材第2页问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4例题与练习

例1在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2教材第3页例题.

例3以-2为根的一元二次方程是()

A.x2+2x-1=0B.x2-x-2=0

C.x2+x+2=0D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页习题21.1第1~7题.

初二数学教案模板表格篇3

教学目标

1.知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。

2.会运用梯形的有关概念和性质进行有关问题的论证和计算。

3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。

教学模式问题解决教学

教学过程

想一想:

什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:

画一画:

画一个梯形,并指出梯形的上、下底,画出梯形的高。

问题教学

问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)

问题2:如图4.9-1,在(1)中:四边形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四边形ABCD的AD∥BC,ABCD,且AB=CD。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中CD⊥BC,那么CD⊥AD吗?(CD⊥AD,且指出:CD就是直角梯形的高)当CD⊥BC时,另一腰AB可以垂直BC吗?为什么?(若AB⊥BC,那么四边形ABCD就成为矩形了,不再是梯形。)在图(2)中,上底AD与下底BC能相等吗?(不能,否则四边形ABCD成为平行四边形,不再是梯形。)

练一练:课本例1后练习第l、2题。

问题3:观察图4.9-2中的等腰梯形ABCD,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?

说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作AE⊥BC,DF⊥BC)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。

问题4:如何证明等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰BA、CD相交于点E,易证△AED和△EBC都是等腰三角形。EF⊥BC,则EF⊥AD,EF所在的直线是两个等腰三角形EAD、EBC的对称轴。由轴对称图形可知,也是等腰梯形ABCD的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)

例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。

课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在Rt△AGD中求出高DG=4cm。)

初二数学教案模板表格篇4

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;

(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;

(2)(m+4n)2;

(3)(a+b)2;

(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:

(1)m2-8mn+16n2

(2)m2+8mn+16n2;

(3)a2+2ab+b2;

(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;

(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。

三、随堂练习,巩固深化

课本P170练习第1、2题。

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值。

(1)x2+y2;

(2)(x-y)2

2.已知x+=-3,求x4+的值。

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2。

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。

五、布置作业,专题突破

初二数学教案模板表格篇5

探索勾股定理(二)

教学目标:

1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2.掌握勾股定理和他的简单应用

重点难点:

重点:能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1)(2))

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

=请同学们对上面的式子进行化简,得到:即=

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、讲例

1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作业

1、1、课文P11§1.21、2

2、选用作业。

初二数学教案模板表格篇6

教学目标:

1.知识目标:通过折叠探索等腰三角形、等边三角形的性质。

2.能力目标:进行操作、观察、分析、比较、交流等教学活动,让学生在亲身经历类似的创造活动过程中学习数学知识。

3.情感目标:培养学生用事实验证事物的能力,而不是用主观臆断事物的属性。

教学过程:

一、反馈作业

1.师:昨天我们学习了哪些知识?对于等腰三角形和等边三角形,大家回家也做了探究型作业,对他们有了更深的了解。谁来说说你还知道些什么?

2.师:刚才也有同学谈到其实等腰三角形和等边三角形是对称图形。老师说它们可以称为轴对称图形。

二、新课探究

1.师:你能不能把一个等腰

三角形折一折分成2个部分,使这2部分完全重合?

2.师:大家都可以这样做到,那么谁能指一指我们是沿着哪一条线对折才能使图形对折后完全重合的吗?(学生指)

师:我们把这条能使图形对折

后重合的直线称为对称轴。(板书)我们通常用虚线来表示对称轴。(学生用虚线表示)

3.学生探究

师:你能不能用找到等腰三角形对称轴的方法来找一找等边三角形的对称轴?

(学生尝试)学生交流:你是怎样找的?你找到几条?

(图形对折,是否完全重合)

3.小结:等腰三角形有一条对称轴,等边三角形有三条对称轴。而三条边都不相等的三角形却一条对称轴也没有。

三、探究作业

1.在生活中还有哪些是轴对称图形,也有对称轴,我请同学们回家去找一下,用剪刀和纸把它剪出来,看谁剪得最多。

2.想不出的同学可以问问现在5年级的同学,他们会给你们帮助的。

初二数学教案模板表格篇7

教材分析

1.本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

学情分析

1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

教学目标

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

教学重点和难点

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

初二数学教案模板表格篇8

教学目标

1、知识与技能

能确定多项式各项的公因式,会用提公因式法把多项式分解因式、

2、过程与方法

使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、

3、情感、态度与价值观

培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、

重、难点与关键

1、重点:掌握用提公因式法把多项式分解因式、

2、难点:正确地确定多项式的公因式、

3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、

教学方法

采用“启发式”教学方法、

教学过程

一、回顾交流,导入新知

【复习交流】

下列从左到右的变形是否是因式分解,为什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2、

问题:

1、多项式mn+mb中各项含有相同因式吗?

2、多项式4x2-x和xy2-yz-y呢?

请将上述多项式分别写成两个因式的乘积的形式,并说明理由、

【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、

概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、

二、小组合作,探究方法

【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、

三、范例学习,应用所学

【例1】把-4x2yz-12xy2z+4xyz分解因式、

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2?3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2?3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、

【教师活动】引导学生观察并分析怎样计算更为简便、

解:0、84×12+12×0、6-0、44×12

=12×(0、84+0、6-0、44)

=12×1=12、

【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

四、随堂练习,巩固深化

课本P167练习第1、2、3题、

【探研时空】

利用提公因式法计算:

0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69

五、课堂总结,发展潜能

1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、

2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、

六、布置作业,专题突破

课本P170习题15、4第1、4(1)、6题、

板书设计

初二数学教案模板表格篇9

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.

重点

求根公式的推导和公式法的应用.

难点

一元二次方程求根公式的推导.

一、复习引入

1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提问1 这种解法的(理论)依据是什么?

提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)

(学生活动)用配方法解方程 2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

补:(5)(x-2)(3x-5)=0

三、巩固练习

教材第12页 练习1.(1)(3)(5)或(2)(4)(6).

四、课堂小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.

(4)初步了解一元二次方程根的情况.

五、作业布置

教材第17页 习题4

初二数学教案模板表格篇10

教学目标:

1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式=a(x0)中,规定x=。

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3);(4)0.0001

三、练习

P69练习1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

初二数学教案模板表格篇11

教学目标:

1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3、培养和发展学生的实验操作能力,发现美和创造美的能力。

重点难点:

会利用轴对称的知识画对称图形。

教学方法:

1、创设情景,引发思维。

2、组织讨论,深化思维。

3、加强练习,发展思维。

预习作业:

1、欣赏P1的图片,你发现了这些图形有什么相同点和不同点?

2、同桌互相说说什么样的图形叫作轴对称图形?

3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?

4、试着在例2的格子图片上画一画

5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?

教学过程:

一、复习引入

1、轴对称图形的概念

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

2、通过例题探究轴对称图形的性质

二、例题1

你能发现什么规律。

三、交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

四、教学画对称图形。

例题2

1、在研究的基础上,让学生用铅笔试画。

2、通过课件演示画的全过程,帮助学生纠正不足。

五、练习

1、欣赏下面的图形,并找出各个图形的对称轴。

2、学生相互交流

你们还见过哪些轴对称图形?

用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,

(1)思考

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

3、课内练习一-----第1、2题。

4、课外作业:通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣

5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数

学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。

板书设计:

轴对称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

初二数学教案模板表格篇12

【教学目标】

知识与技能

会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法

经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观

通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】

一、创设情境,故事引入

【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事

【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论

【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

二、范例学习,应用所学

【教师讲述】

平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

例1:运用平方差公式计算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

《乘法公式》同步练习

二、填空题

5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

6、若32×83=2n,则n=______。

《乘法公式》同步测试题

25、利用正方形的面积公式和梯形的面积公式即可求解;

根据所得的两个式子相等即可得到。

此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

等式左边减数的底数与序号相同,由此得出第n个式子;

初二数学教案模板表格篇13

一、学生学情分析

学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.

二、教学目标

知识与技能:

(1)让学生会推导完全平方公式,并能进行简单的应用.

(2)了解完全平方公式的几何背景.

数学能力:

(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.

(2)发展学生的数形结合的数学思想.

情感与态度:

将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2–4a+22

活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

第三环节:推广到一般情况,形成公式

活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义.

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央.

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9

②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+

活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

第八环节:随堂练习

活动内容:计算:①;②;③(n+1)2–n2

活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

第九环节:学生PK

活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

第十环节:学生反思

活动内容:通过今天这堂课的学习,你有哪些收获?

收获1:认识了完全平方公式,并能简单应用;

收获2:了解了两数和与两数差的完全平方公式之间的差异;

收获3:感受到数形结合的数学思想在数学中的作用.

活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

第十一环节:布置作业:

课本P43习题1.13

初二数学教案模板表格篇14

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1.知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2.过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3.情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1.重点:会确定全等三角形的对应元素.

2.难点:掌握找对应边、对应角的方法.

3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的.边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

四张大小一样的纸片、直尺、剪刀.

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

初二数学教案模板表格篇15

一、读一读

学习目标:1、掌握“三角形内角和定理”的证明及其简单应用;

2、体会思维实验和符号化的理性作用

二、试一试

自学指导:

1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里和定理,你能进行论证么?

2、已知:如右图所示,△ABC

求证:∠A+∠B+∠C=180°

思考:延长BC到D,过点C作射线CE∥BA,这样就相

当于把∠A移到了的位置,把∠B移到的位置。

注意:这里的CD,CE称为辅助线,辅助线通常画成虚线

证明:作BC的延长线CD,过点C作射线CE∥BA,则:

3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!

三、练一练

1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。

2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC

求证:∠ADE=50°

3、如图,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=25°,求∠BDE的大小。

4、证明:四边形的内角和等于360°

17712