教案吧 > 初中教案 > 八年级教案 >

八年级数学教案ppt

时间: 新华 八年级教案

编写教案可以帮助教师养成严谨的工作态度和认真的办事习惯,同时可以使备课更加充分,上课有条不紊。什么才算好的八年级数学教案ppt?接下来给大家分享一些八年级数学教案ppt,供大家参考。

八年级数学教案ppt篇1

探索勾股定理(一)

教学目标:

1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、创设问题的情境,激发学生的学习热情,导入课题

出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2(书中的P2图1—2)并回答:

1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、图1—2中,A,B,C之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C的关系呢?

二、做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C之间有什么关系?

2、图1—4中,A,B,C之间有什么关系?

3、从图1—1,1—2,1—3,1—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议

1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、巩固练习

1、错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足=25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边

综上所述这个题目条件不足,第三边无法求得。

2、练习P7§1.11

六、作业

课本P7§1.12、3、4

八年级数学教案ppt篇2

一、业务学习

加强学习,提高思想认识,树立新的理念.坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。另外,抽时间学习,并作学习笔记,以丰富自己的头脑,提高业务水平。

二、教学方面

教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

1、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。

2、注重课堂教学效果。针对初一年级学生特点,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。注意和学生一起探索各种题型,我发现学生都有探求未知的特点,只要勾起他们的求知欲与兴趣,学习劲头就上来了,如每节课后如有时间,我都出几题有新意,又不难的相关题型,与学生一起研究。

3、要进行一定数量的练习,相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,有了一定的思维能力与打好基础,可以做到用一把钥匙开多道门。

4、考前复习中要认真研究与整理出考试要考的知识点,重难点,要重点复习的题目类型,难度,深度。这样复习时才有的放矢,复习中什么要多抓多练,什么可暂时忽略,这一点很重要,会直接影响复习效果与成绩。另外还要抓好后进生工作,后进生会影响全班成绩与平均分,所以要花力气使大部分有希望的后进生跟得上。例如在课堂上,多到他们身边站一站,多问一句:会不会,懂不懂,课后,对他们的不足及时帮助,使他们感受到老师的关心,从而能够主动学习。

5、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,学习他人的先进教学方法。

6、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

三、工作中存在的问题

1、教材挖掘不深入。

2、教法不够灵活,不能总是吸引学生学习,对学生的引导、启发不足。

3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导.

4、后进生的辅导不够,由于对学生的基础知识掌握情况了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中也知道,有的学生只是做表面文章,“出工不出力”

5、教学反思不够。

四、今后努力的方向

1、加强学习,学习新课标下新的教学思想。

2、学习新课标,挖掘教材,进一步把握知识点和考点。

3、多听课,学习同科目教师先进的教学方法和教学理念。

4、加强转差培优力度。

5、加强教学反思,加大教学投入。

12.3.1.1等腰三角形(一)

教学目标

1.等腰三角形的概念。2.等腰三角形的性质。3.等腰三角形的概念及性质的应用。

教学重点:1.等腰三角形的概念及性质。2.等腰三角形性质的应用。

教学难点:等腰三角形三线合一的性质的理解及其应用。

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等。(简写成“等边对等角”)

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合。(通常称作“三线合一”)

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程。

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3。2.阅读课本P49~P51,然后小结。

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

Ⅴ.作业:课本P56习题12.3第1、2、3、4题。

板书设计

12.3.1.1等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质:1.等边对等角2.三线合一

12.3.1.1等腰三角形(二)

教学目标

1.理解并掌握等腰三角形的判定定理及推论

2.能利用其性质与判定证明线段或角的相等关系.

教学重点:等腰三角形的判定定理及推论的运用

教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

教学过程:

一、复习等腰三角形的性质

二、新授:

I、提出问题,创设情境

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

II、引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证.

3.小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”。(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。

4.引导学生说出引例中地质专家的测量方法的根据。

III、例题与练习

1.如图2

其中△ABC是等腰三角形的是[]

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知AD=4cm,则BC______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(1)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV、课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

V、布置作业:P56页习题12.3第5、6题

八年级数学教案ppt篇3

通过八年级数学一个多学期的教学,我深刻体会到在学生自主探索学习的过程中,当他们遇到自己无法解决的疑难问题时,我们教师在观察的过程中应该做适当的评价和提示,以弥补学生学习自主学习能力的不足之处,从而达到化难为易、提高学生数学水平的目的。在课堂教学过程中,诚信的交流(教师与学生之间,学生与学生之间)意味着教师对学生的殷切的期望和美好的激励。我们教师都喜望每一个学生都能学好数学,真诚的赞美学生数学做题或学习的成功,让学生在课堂中能在不断出现的新问题和不断被自己“聪明”的解决问题的成功愉悦中进行学习,让他们享受到学习的快乐。学生在学习中充分合作、交流,并积极的相互反馈、互相帮助,这样才能有利于充分发挥集体智慧,开展合作学习,从而获得好的教学效果。

在八年级数学教学过程中,如:分式、平行四边形等内容,我对于学生的提问,不直接告诉学生答案,而是对学生作出适当的启发和提示,让学生自己去动手动脑,思考问题,这样可以逐步培养学生自主学习的能力,有利于培养他们养成良好的自学习惯。如我们八(4)班的刘欣欣、赵良超等同学,一学期多下来,数学自学能力大大提高了,经常在预习新课时就已经把课后的练习完成了。在课堂上我们教师应该做到三“不”:学生能自己说出来的,教师不说;学生能自己学会的,教师不讲;学生能自己做到的,教师不教。尽可能地提供多种机会让学生自己去理解、去体验,从而提高学生的数学认知能力,激发学生的数学兴趣,加强学生数学能力的培养,提高他们解决问题的能力。

同时,八年级是一个特别的年级,容易产生两级分化,数学学科也是如此,这就更需要我们数学老师在课下也要与学生多交流,多沟通,了解他们的思想动态以及对数学学习的建议,在教学中要面向全体学生,使每一个学生都能学到数学知识,学会数学知识,每天都有新的收获,关心、呵护他们,让他们与您心连心!

总之,要想教好八年级数学、让学生学好八年级数学需要我们八年级数学教师付出自己的心血和汗水,付出自己的爱心,才能桃李满天下!

八年级数学教案ppt篇4

教材分析

1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

学情分析

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

教学目标

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

八年级数学教案ppt篇5

平方差公式

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式.

学习过程:

一、自主探索

1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二、试一试

例1、利用平方差公式计算

(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)

例2、利用平方差公式计算

(1)(1)(-x-y)(-x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n2

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形.

(1)请表示图中阴影部分的面积.

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗?aab

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797(2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()

A.只能是数B.只能是单项式C.只能是多项式D.以上都可以

4.下列多项式的乘法中,可以用平方差公式计算的是()

A.(a+b)(b+a)B.(-a+b)(a-b)

C.(a+b)(b-a)D.(a2-b)(b2+a)

5.下列计算中,错误的有()

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个B.2个C.3个D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

6.若x2-y2=30,且x-y=-5,则x+y的值是()

A.5B.6C.-6D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11.利用平方差公式计算:2019.

12.计算:(a+2)(a2+4)(a4+16)(a-2).

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是().

(A)(x+1)(1+x)(B)(1/2b+b)(-b-1/2a)(C)(-a+b)(-a-b)(D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)()=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y)(2)(a-2)(a+2)(a2+4)

4.利用平方差公式计算

①1003997②1415

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1)(a-b+c)(a-b-c)

2)(a+2b-3)(a-2b+3)

3)(2x+y-z+5)(2x-y+z+5)

4)(a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

八年级数学教案ppt篇6

一、目标要求

1.理解掌握分式的四则混合运算的顺序。

2.能正确熟练地进行分式的加、减、乘、除混合运算。

二、重点难点

重点:分式的加、减、乘、除混合运算的顺序。

难点:分式的加、减、乘、除混合运算。

分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。

三、解题方法指导

【例1】计算:(1)[++(+)]·;

(2)(x-y-)(x+y-)÷[3(x+y)-]。

分析:分式的四则混合运算要注意运算顺序及括号的关系。

解:(1)原式=[++]·=[++]·=·==。

(2)原式=·÷=··=y-x。

【例2】计算:(1)(-+)·(a3-b3);

(2)(-)÷。

解:(1)原式=-+=-+ab

=a2+ab+b2-(a2-b2)-ab

=a2+ab+b2-a2+b2-ab=2b2。

(2)原式=[-]·=-=-====。

说明:分式的加、减、乘、除混合运算注意以下几点:

(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

(3)注意括号的“添”或“去”、“变大”与“变小”。

(4)结果要化为最简分式。

四、激活思维训练

▲知识点:求分式的值

【例】已知x+=3,求下列各式的值:

八年级数学教案ppt篇7

三角形的证明

1、等腰三角形

(1)三角形全等的性质及判定

全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、

(2)等腰三角形的判定、性质及推论

性质:等腰三角形的两个底角相等(等边对等角)

判定:有两个角相等的三角形是等腰三角形(等角对等边)

推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)

(3)等边三角形的性质及判定定理

性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形

(1)勾股定理及其逆定理

定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系

定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

(4)命题与逆命题

命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。

(5)直角三角形全等的判定定理

定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)

3、线段的垂直平分线

线段垂直平分线的性质及判定

性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

八年级数学教案ppt篇8

一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算:(a-b)=

方法一:方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3-a)2、(2a-1)3、(3y-x)

4、(2x–4y)5、(3a-)

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999)2、(a–b–c)

3、(a+1)-(a-1)

(四)达标训练

1、、选择:下列各式中,与(a-2b)一定相等的是()

A、a-2ab+4bB、a-4b

C、a+4bD、a-4ab+4b

2、填空:

(1)9x++16y=(4y-3x)

(2)()=m-8m+16

2、计算:

(a-b)(x-2y)

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a–b=1,a+b=25,求ab的值

八年级数学教案ppt篇9

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

八年级数学教案ppt篇10

一、教学目标

【知识与技能】

理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理;利用勾股定理的逆定理判定一个三角形是不是直角三角形。

【过程与方法】

通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

【情感态度与价值观】

通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

二、教学重难点

【重点】

勾股定理逆定理的应用;

【难点】

探究勾股定理逆定理的证明过程。

三、教学过程

(一)导入新课

复习回顾出勾股定理。

师生活动:学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系。

追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?

师生活动:师生共同得出新的命题,教师指出其为勾股定理的逆命题。

(四)小结作业

小结:勾股定理的逆定理是什么?如果判断一个三角形是不是直角三角形,以及勾股定理的逆定理的应用需要注意点什么等问题?

作业:总结一下判定一个三角形是直角三角形的方法。

八年级数学教案ppt篇11

学习目标

1了解无理数和实数的概念

2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小

3了解实数范围内相反数和绝对值的意义

学习重点正确理解实数的概念

学习难点理解实数的概念

问题用计算机把下列有理数写成小数的形式

5−3,7,8,1190,9

我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数。

那么无限不循环小数叫什么呢?

无理数:无限不循环小数叫做无理数。

通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如、、−、等都是无理数,π=3.1415926…也是无理数。

实数:有理数和无理数统称为实数。

有理数有限小数或无限小数依此分类实数无理数无限不循环小数

像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479115

正负之分,所以依此分类为

正实数正有理数

正无理数

实数0负有理数负实数负无理数

一、把下列各数填入相应的集合内

0.6、-

43、0、

33、0.13、π、

(1)有理数集合:{}

(2)无理数集合:{}

(3)整数集合:{}

(4)分数集合:{}

(5)实数集合:{}

我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?

事实上,每一个无理数都可以用数轴上的一个点表示出来。即数轴上的点有些表示有理数,有些表示无理数。

当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.

平面直角坐标系中的点与有序实数对之间也是一一对应的。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数。

(1)数a的相反数是-a,(a表示任何实数)

(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.

课堂小结

1、这节课你学到的知识有

2、这节课你的收获有

3、这节课应注意的问题有

练习题

a

1、若实数a满足a1,则()A、a0B、a0C、a0D、a0

2、下列说法正确的是().

A.无限小数都是无理数B.带根号的数都是无理数

C.无理数是无限小数D.无理数是开方开不尽的数

3、和数轴上的点一一对应的是()

A整数B有理数C无理数D实数

35x

4、绝对值等于的数是,的相反数是,8的相反数是;12的

相反数是_________________,绝对值是.

5、如果一个实数的绝对值是37,那么这个实数是

八年级数学教案ppt篇12

一、教学目标:

1、加深对加权平均数的理解

2、会根据频数分布表求加权平均数,从而解决一些实际问题

3、会用计算器求加权平均数的值

二、重点、难点和难点的突破方法:

1、重点:根据频数分布表求加权平均数

2、难点:根据频数分布表求加权平均数

3、难点的突破方法:

首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析

1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题

(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

3、P141利用计算器计算平均值

这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。

八年级数学教案ppt篇13

活动一、创设情境

引入:首先我们来看几道练习题(幻灯片)

(复习:平行线及三角形全等的知识)

下面我们一起来欣赏一组图片(幻灯片)

[学生活动]观看后答问题:你看到了哪些图形?

(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

[学生活动]小组合作交流,拼出图案的类型。

同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)

活动二、合作交流,探求新知

问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

[学生活动]认真观察、讨论、思考、推理。

鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

小结平行四边形的性质:

平行四边形的对边相等

平行四边形的对角相等(这里要弄清对角、对边两个名词)

你能演示你的结论是如何得到的吗?(学生演示)

你能证明吗?(幻灯片出示证明题)

[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

自己完成性质2的证明。

活动三、运用新知

性质掌握了吗?一起来看一道题目:

尝试练习(幻灯片)例1

[学生活动]作尝试性解答。

八年级数学教案ppt篇14

一、学习目标:1·多项式除以单项式的运算法则及其应用·

2·多项式除以单项式的运算算理·

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1·计算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy·

2·提问:①说说你是怎样计算的②还有什么发现吗?

(三)总结法则

1·多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2·本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行·

E、多项式除以单项式法则

第三十四学时:14·2·1平方差公式

一、学习目标:1·经历探索平方差公式的过程·

2·会推导平方差公式,并能运用公式进行简单的运算·

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式·

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积·

(1)(x+1)(x—1)(2)(m+2)(m—2)

(3)(2x+1)(2x—1)(4)(x+5y)(x—5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差·

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2)(2)(b+2a)(2a—b)(3)(—x+2y)(—x—2y)

例2:计算:

(1)102×98(2)(y+2)(y—2)—(y—1)(y+5)

随堂练习

计算:

(1)(a+b)(—b+a)(2)(—a—b)(a—b)(3)(3a+2b)(3a—2b)

(4)(a5—b2)(a5+b2)(5)(a+2b+2c)(a+2b—2c)(6)(a—b)(a+b)(a2+b2)

五、小结:(a+b)(a—b)=a2—b2

八年级数学教案ppt篇15

514.3.2.2等边三角形(二)

教学目标

掌握等边三角形的性质和判定方法.

培养分析问题、解决问题的能力.

教学重点

等边三角形的性质和判定方法.

教学难点

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

III课堂小结

1、等腰三角形和性质

2、等腰三角形的条件

V布置作业

1.教科书第147页练习1、2

2.选做题:

(1)教科书第150页习题14.3第ll题.

(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

(3)《课堂感悟与探究》

5

八年级数学教案ppt篇16

一.教学内容:

小学数学新课标人教版教科书第四册第六单元《克与千克的认识》及相关练习

二.教学目标:

1.在具体的生活情境中,让学生感受并认识质量单位克和千克,初步建立1克和1千克的观念,知道1千克=1000克

2.在建立质量观念的基础上,培养学生初步的估量物体质量的能力和会用秤称物体的方法。

3.激发学生探索知识的意识,及互相合作学习的能力,体会数学在现实生活中的作用。

三.重点:

认识质量单位克和千克,初步建立1克和1千克的观念,知道1千克=1000克。联系学生已有的生活经验,让学生选择合适的单位。

四.难点:

建立1克和1千克的质量,较准确地估计物体质量,表示物体的轻重。

五.解决方法:

为学生创造充分的感受、体验的机会。

六.设计理念:

由书本数学向生活数学转变,重视培养解决问题的策略,组织学生合作学习,人人参与、主动发展。

七.教具、学具准备:

多媒体课件,天平,盘称,2分硬币,一块肥皂,2袋500克的糖,1千克的称砣一个

八.教学过程:

(一)创设情景,导入课题

1、组织学生进行负重跑步比赛。

师问:我听说我们班有两名同学跑得很快,他们是谁呀?今天我们让他们举行一场比赛怎么样?不过今天的比赛难度增加了,他们每人要背一个同学比赛,你们想看看吗?

学生活动。

师问:让我们来采访一下冠军,你为什么不选王仕聿(重的那位同学)呢?

那么,王仕聿,你有多重?除了“斤”以外,你们还知道哪些表示物体质量的单位?

2、师说:“斤”“两”是我国过去常用的质量单位,从1990年12月21日开始,我国就规定不使用这两个计量单位了。现在我国已经加入世界贸易组织,要和国际接轨,而“克”“千克”是全世界各国统一使用的质量单位。这节课我们就来研究国际标准的&39;质量单位“克与千克”(板书课题)

(二)探究新知

交流汇报:请学生汇报去超市调查情况。

师:昨天老师让同学们去超市调查我们日常生活中常见的物品的质量,谁来说说你调查了些什么?

学生汇报。

师问:同学们说了那么多,这些物品有的用“克”作单位,有的用“千克”作单位?请你仔细想一想,什么时候用“克”,什么时候用“千克”作单位呢?(比较轻的东西用“克”做单位,比较重的东西用“千克”作单位)

八年级数学教案ppt篇17

教学目标:

1.巩固对人民币知识的认识;

2.提高100以内加、减运算的技能;

3.加深对加减法数量关系的理解;

4.培养学生收集信息、分类整理等数学意识。

教学步骤:

1.模拟“百货店”一角,巧设购物环境。

教师把毛巾、肥皂、牙膏、巧克力、奶糖、钢笔、铅笔、书包、练习本等商品放置在桌面上,每件商品的旁边都放上由学生制作的价格标签,并挂上“欢迎到百货店购物”的`字样。上课前,让同学们看一看。

2.化静为动,吸引学生注意力,培养其观察能力。

首先,教师利用电教平台出示如下一组文具、日用品及其价格:

然后,利用多媒体辅助教学,播放“百货店”的欢迎语,同时出示题目:小勇高高兴兴地拿着10元钱到“百货店”购物,假如你是小勇,你能用10元钱买到哪些文具或日用品?

3.让学生独立思考、小组讨论。

学生对教师提出的问题,经过各自独立思考后,纷纷举手作答:

生1:用10元钱可以买到1支钢笔、1支圆珠笔和1盒巧克力。

生2:用10元钱可以买到2本练习本、1支圆珠笔和1盒奶糖。

生3:用1元钱可以买到4条毛巾和2块肥皂。

至此,教师不急于作出结论,而是让学生分组讨论。通过实践,培养了学生的`合作交流意识。

4.每组选派代表到“百货店”按各自需要自由选购。

经过各个小组的热烈讨论,每个小组拟定选购方案若干个,然后派代表按各自的购物方案到“百货店”选购文具或日用品。

5.巧设问题,激发热情,活跃课堂气氛。

教师在课堂上有意识地问购物代表:“你们拿10元钱选购到哪些文具呀?”“你们拿10元钱选购到哪些商品呀?”……各组代表积极地发言,整个课堂的学习气氛活跃起来了。

6.采用激励性评价,使学生从中体验到成功的喜悦。

教师为了使每个学生都有成功感,发挥同学们团结合作的精神,采取了学生自我评价、合作评价、教师评价等的激励性评价方式,巧用计算机辅助教学、巧选文具的活动、巧评合作得出的结果。这样,在教师的引导下,通过一系列口、脑、手并用和求异思维的激发,使学生懂得:用同样多的钱,可以按需要购物,按价格大小巧安排,做到合理消费。这对诱发学生的创新意识起到了重要的作用,进而培养了学生的合作交流意识,锻炼了学生的合作交流能力。

八年级数学教案ppt篇18

教学目标

知识与技能目标

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

过程与方法目标

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

情感与态度目标

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材分析

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

学情分析

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

教学流程

一、创设情境,引入新课

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

八年级数学教案ppt篇19

【教学目标】

1.了解分式概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学重难点】

重点:理解分式有意义的条件,分式的值为零的条件.

难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

【教学过程】

一、课堂导入

1.让学生填写[思考],学生自己依次填出:,,,.

2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.

二、例题讲解

例1:当x为何值时,分式有意义.

【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.

(补充)例2:当m为何值时,分式的值为0?

(1);(2);(3).

【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

三、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.当x取何值时,下列分式有意义?

3.当x为何值时,分式的值为0?

四、小结

谈谈你的收获.

五、布置作业

课本128~129页练习.

八年级数学教案ppt篇20

一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质

性质1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

性质2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

性质3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac<bc<p="">

不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

三、解不等式的步骤:

1、去分母;

2、去括号;

3、移项合并同类项;

4、系数化为1。

四、解不等式组的步骤:

1、解出不等式的解集

2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:

(1)审题;

(2)设未知数,找(不等量)关系式;

(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:

1、求4x-67x-12的非负数解.

2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

18125