教案吧 > 初中教案 > 八年级教案 >

八年级的数学教案

时间: 新华 八年级教案

教案可以帮助教师明确教学目标和内容,以便更好地组织教学,确保教学内容的准确性和有效性。写好八年级的数学教案不是那么简单,下面给大家分享八年级的数学教案,供大家参考。

八年级的数学教案篇1

教学目标

教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.

教学重点难点:

重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学过程

1、创设问题情境,引入新课:

前几节课我们学习了勾股定理,你还记得它有什么作用吗?

例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?

根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

所以至少需13米长的梯子.

2、讲授新课:①、蚂蚁怎么走最近

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).

(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)

(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?

(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)

我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).

我们不难发现,刚才几位同学的走法:

(1)A→A′→B;(2)A→B′→B;

(3)A→D→B;(4)A—→B.

哪条路线是最短呢?你画对了吗?

第(4)条路线最短.因为“两点之间的连线中线段最短”.

②、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测∠DAB=90°,∠CBA=90°.连结BD或AC,也就是要检测△DAB和△CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.

③、随堂练习

出示投影片

1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?

2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?

1.分析:首先我们需要根据题意将实际问题转化成数学模型.

解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).

在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.

2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.

解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.

(1)x2=1.52+22,x2=6.25,x=2.5

所以最长是2.5+0.5=3(米).

(2)x=1.5,最短是1.5+0.5=2(米).

答:这根铁棒的长应在2~3米之间(包含2米、3米).

3.试一试(课本P15)

在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

我们可以将这个实际问题转化成数学模型.

解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得

(x+1)2=x2+52,x2+2x+1=x2+25

解得x=12

则水池的深度为12尺,芦苇长13尺.

④、课时小结

这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.

⑤、课后作业

课本P25、习题1.52

八年级的数学教案篇2

教材分析

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

学情分析

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

教学目标

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

教学重点和难点

重点:能运用完全平方公式进行简单的计算。

难点:会推导完全平方公式

教学过程

教学过程设计如下:

〈一〉、提出问题

[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答]分组交流、讨论

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2、

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判断:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一现身手

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、探险之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

板书设计

完全平方公式

两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)2=a2+2ab+b2;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2

八年级的数学教案篇3

一、教材分析:

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

二、学生分析:

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

三、教法分析:

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

四、学法分析:

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

五、教学程序:

第一环节:相关知识回顾

以提问的形式复习的平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质

定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

3、例题讲解:求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级的数学教案篇4

一、教学目标

1、理解分式的基本性质。

2、会用分式的基本性质将分式变形。

二、重点、难点

1、重点:理解分式的基本性质。

2、难点:灵活应用分式的基本性质将分式变形。

3、认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、练习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1、请同学们考虑:与相等吗?与相等吗?为什么?

2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

八年级的数学教案篇5

●教学目标

(一)教学知识点

1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.

2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.

(二)能力训练要求

能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.

(三)情感与价值观要求

能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.

●教学重点

根据所给信息确定一次函数的表达式.

●教学难点

用一次函数的知识解决有关现实问题.

●教学方法

启发引导法.

●教具准备

小黑板、三角板

●教学过程

Ⅰ.导入 新课

[师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.

Ⅱ.讲授新课

一、试一试(阅读课文P167页)想想下面的问题。

某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。

(1)写出v与t之间的关系式;

(2)下滑3秒时物体的速度是多少?

分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析

式求出待定系数即可.

[师]请大家先思考解题的思路,然后和同伴进行交流.

[生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.

解:由题意可知v是t的正比例函数.

设v=kt

∵(2,5)在函数图象上

∴2k=5

∴k=

∴v与t的关系式为

v= t

(2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.

解:当t=3时

v= ×3= =7.5(米/秒)

二、想一想

[师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.

[生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;

第二步设函数的表达式;

第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.

第四步解出k,b值.

第五步把k,b的值代回到表达式中即可.

[师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?

[生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.

三、阅读课文P167页例一,尝试分析解答下面例题。

[例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的

一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.

[师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.

[生]没有画图象.

[师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?

[生]因为题中已告诉是一次函数.

[师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.

[生]解:设y=kx+b,根据题意,得

15=k+b, ①

16=3k+b. ②

由①得b=15-k

由②得b=16-3k

∴15-k=16-3k

即k=0.5

把k=0.5代入①,得k=14.5

所以在弹性限度内.

y=0.5x+14.5

当x=4时

y=0.5×4+14.5=16.5(厘米)

即物体的质量为4千克时,弹簧长度为16.5厘米.

[师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.

[生]它们的相同步骤是第二步到第四步.

求函数表达式的步骤有:

1.设函数表达式.

2.根据已知条件列出有关方程.

3.解方程.

4.把求出的k,b值代回到表达式中即可.

四.课堂练习

(一)随堂练习P168页

(题目见教材)

解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)

(题目见教材)

解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。

五.课时小结

本节课我们主要学习了根据已知条件,如何求函数的表达式.

其步骤如下:

1.设函数表达式;

2.根据已知条件列出有关k,b的方程;

3.解方程,求k,b;

4.把k,b代回表达式中,写出表达式.

六、布置作业 :P169页1、2

八年级的数学教案篇6

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

八年级的数学教案篇7

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级的数学教案篇8

知识技能

1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2、探究线段垂直平分线的性质。

过程方法

1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

教学重点

1、轴对称的性质。

2、线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

八年级的数学教案篇9

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

八年级的数学教案篇10

课题:一元二次方程实数根错例剖析课

【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。

【课前练习】

1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当a_____时,方程为一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。

【典型例题】

例1下列方程中两实数根之和为2的方程是()

(A)x2+2x+3=0(B)x2-2x+3=0(c)x2-2x-3=0(D)x2+2x+3=0

错答:B

正解:C

错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。

例2若关于x的方程x2+2(k+2)x+k2=0两个实数根之和大于-4,则k的取值范围是()

(A)k>-1(B)k<0(c)-1<k<0(D)-1≤k<0

错解:B

正解:D

错因剖析:漏掉了方程有实数根的前提是△≥0

例3(20__广西中考题)已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。

错解:由△=(-2)2-4(1-2k)(-1)=-4k+8>0得k<2又∵k+1≥0∴k≥-1。即k的取值范围是-1≤k<2

错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。

正解:-1≤k<2且k≠

例4(20__山东太原中考题)已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。

错解:由根与系数的关系得

x1+x2=-(2m+1),x1x2=m2+1,

∵x12+x22=(x1+x2)2-2x1x2

=[-(2m+1)]2-2(m2+1)

=2m2+4m-1

又∵x12+x22=15

∴2m2+4m-1=15

∴m1=-4m2=2

错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m=-4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1=-19<0,方程无实数根,不符合题意。

正解:m=2

例5若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1)=16m+20

∵△≥0

∴16m+20≥0,

∴m≥-5/4

又∵m2-1≠0,

∴m≠±1

∴m的取值范围是m≠±1且m≥-

错因剖析:此题只说(m2-1)x2-2(m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-

例6已知二次方程x2+3x+a=0有整数根,a是非负数,求方程的整数根。

错解:∵方程有整数根,

∴△=9-4a>0,则a<2.25

又∵a是非负数,∴a=1或a=2

令a=1,则x=-3±,舍去;令a=2,则x1=-1、x2=-2

∴方程的整数根是x1=-1,x2=-2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0,x4=-3

正解:方程的整数根是x1=-1,x2=-2,x3=0,x4=-3

【练习】

练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。

(1)求k的取值范围;

(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。

解:(1)根据题意,得△=(2k-1)2-4k2>0解得k<

∴当k<时,方程有两个不相等的实数根。

(2)存在。

如果方程的两实数根x1、x2互为相反数,则x1+x2=-=0,得k=。经检验k=是方程-的解。

∴当k=时,方程的两实数根x1、x2互为相反数。

读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。

解:上面解法错在如下两个方面:

(1)漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。

(2)k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数

练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?

解:(1)当a=0时,方程为4x-1=0,∴x=

(2)当a≠0时,∵△=16+4a≥0∴a≥-4

∴当a≥-4且a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2,则:

x1+x2=->0;

x1.x2=->0解得:a<0

综上所述,当a=0、a≥-4、a<0时,即当-4≤a≤0时,原方程只有正实数根。

【小结】

以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】

1、当m为何值时,关于x的方程x2+2(m-1)x+m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+m+5=0(m≠0)没有实数根。

求证:关于x的方程

(m-5)x2-2(m+2)x+m=0一定有一个或两个实数根。

考题汇编

1、(20__年广东省中考题)设x1、x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。

2、(20__年广东省中考题)已知关于x的方程x2-2x+m-1=0

(1)若方程的一个根为1,求m的值。

(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。

3、(20__年广东省中考题)已知关于x的方程x2+2(m-2)x+m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。

4、(20__年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。

八年级的数学教案篇11

1、本节课初步达到了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化;低起点,顺应着学生的认知过程,设置了随堂练习,在用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去计算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。

2、是以讨论的形式呈现给学生例题1,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。

3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

不足:(1)学生对于同分母的分式的加减运算掌握得比较好,但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

(2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。

八年级的数学教案篇12

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3.P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业:1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

八年级的数学教案篇13

学习目标

1了解无理数和实数的概念

2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小

3了解实数范围内相反数和绝对值的意义

学习重点正确理解实数的概念

学习难点理解实数的概念

问题用计算机把下列有理数写成小数的形式

5−3,7,8,1190,9

我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数。

那么无限不循环小数叫什么呢?

无理数:无限不循环小数叫做无理数。

通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如、、−、等都是无理数,π=3.1415926…也是无理数。

实数:有理数和无理数统称为实数。

有理数有限小数或无限小数依此分类实数无理数无限不循环小数

像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479115

正负之分,所以依此分类为

正实数正有理数

正无理数

实数0负有理数负实数负无理数

一、把下列各数填入相应的集合内

0.6、-

43、0、

33、0.13、π、

(1)有理数集合:{}

(2)无理数集合:{}

(3)整数集合:{}

(4)分数集合:{}

(5)实数集合:{}

我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?

事实上,每一个无理数都可以用数轴上的一个点表示出来。即数轴上的点有些表示有理数,有些表示无理数。

当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.

平面直角坐标系中的点与有序实数对之间也是一一对应的。

与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数。

(1)数a的相反数是-a,(a表示任何实数)

(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.

课堂小结

1、这节课你学到的知识有

2、这节课你的收获有

3、这节课应注意的问题有

练习题

a

1、若实数a满足a1,则()A、a0B、a0C、a0D、a0

2、下列说法正确的是().

A.无限小数都是无理数B.带根号的数都是无理数

C.无理数是无限小数D.无理数是开方开不尽的数

3、和数轴上的点一一对应的是()

A整数B有理数C无理数D实数

35x

4、绝对值等于的数是,的相反数是,8的相反数是;12的

相反数是_________________,绝对值是.

5、如果一个实数的绝对值是37,那么这个实数是

八年级的数学教案篇14

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习 教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

八年级的数学教案篇15

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

18849