八年级教案数学教案
教案是教师为每节课制定的教学方案,其中包括每节课的重点、难点、教学内容、教学方法和教学目标等内容。如何才能写出优秀的八年级教案数学教案?这里给大家分享八年级教案数学教案供大家参考。
八年级教案数学教案篇1
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:
2.本质:
四、精讲精练
(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级教案数学教案篇2
不知不觉,一学年又要过去了,我对前阶段的教学进行了反思,用新课程的理念、教学模式,对曾经被视为经验的观点和做法进行了重新审视,现将在反思中得到的体会总结如下
一、教学中要转换角色,改变已有的教学行为
(1)新课程要求教师由传统的知识传授者转变为学生学习的组织者。
(2)教师应成为学生学习活动的引导者。
(3)教师应从“师道尊严”的架子中走出来,成为学生学习的参与者。
二、自我提问
在教学中,应经常进行自我提问,如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。备课时,尽管我预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,我要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策
略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。
三、行动落实
如“合作学习,小组讨论”是新课程倡导的重要的学习理念,然而,在实际教学中,我们看到的往往是一种“形式化”的讨论。“如何使讨论有序又有效地展开”即是我们应该研究的问题。问题确定以后,我们就可以围绕这一问题广泛地收集有关的文献资料,在此基础上提出假设,制定出解决这一问题的行动方案,展开研究活动,并根据研究的实际需要对研究方案作出必要的调整,最后撰写出研究报告。这样,通过一系列的行动研究,不断反思,教师的教学能力和教学水平必将有很大的提高。
四、教师间需互相学习
山之石,可以攻玉”。教师应多观摩其他教师的课,并与他们进行对话交流。在观摩中,教师应分析其他教师是怎样组织课堂教学的,他们为什么这样组织课堂教学;我上这一课时,是如何组织课堂教学的;我的课堂教学环节和教学效果与他们相比,有什么不同,有什么相同;从他们的教学中我受到了哪些启发;如果我遇到偶发事件,会如何处理?通过这样的反思分析,从他人的教学中得到启发,得到教益。就象我校开展各科教师互相听课,人人参与,人人参评,这就给我们教师进步提供了一个很好的学_台。
五、总结记录
一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。
八年级教案数学教案篇3
《矩形》教案
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件。
2.提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。
2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:矩形的性质和常用判别方法的理解和掌握。
教学难点:矩形的性质和常用判别方法的综合应用。
教学方法:分析启发法
教具准备:像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一、情境导入:
演示平行四边形活动框架,引入课题。
二、讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
2.探究矩形的性质:
(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角。
(2)探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等.
(3)议一议:(展示问题,引导学生讨论解决)
①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米,求BD与AD的长。
(引导学生分析、解答)
探索矩形的判别条件:(由修理桌子引出)
(5)想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(6)归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三、课堂练习:(出示P98随堂练习题,学生思考、解答。)
四、新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五、作业设计:P99习题4.6第1、2、3题。
板书设计:
1.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
2.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级教案数学教案篇4
课题:一元二次方程实数根错例剖析课
【教学目的】 精选学生在解一元二次方程有关问题时出现的典型错例加以剖析,帮助学生找出产生错误的原因和纠正错误的方法,使学生在解题时少犯错误,从而培养学生思维的批判性和深刻性。
【课前练习】
1、关于x的方程ax2+bx+c=0,当a_____时,方程为一元一次方程;当a_____时,方程为一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=_______,当△_______时,方程有两个相等的实数根,当△_______时,方程有两个不相等的实数根,当△________时,方程没有实数根。
【典型例题】
例1下列方程中两实数根之和为2的方程是()
(A)x2+2x+3=0(B)x2-2x+3=0(c)x2-2x-3=0(D)x2+2x+3=0
错答:B
正解:C
错因剖析:由根与系数的关系得x1+x2=2,极易误选B,又考虑到方程有实数根,故由△可知,方程B无实数根,方程C合适。
例2若关于x的方程x2+2(k+2)x+k2=0两个实数根之和大于-4,则k的取值范围是()
(A)k>-1(B)k<0(c)-1<k<0(D)-1≤k<0
错解:B
正解:D
错因剖析:漏掉了方程有实数根的前提是△≥0
例3(20__广西中考题)已知关于x的一元二次方程(1-2k)x2-2x-1=0有两个不相等的实根,求k的取值范围。
错解:由△=(-2)2-4(1-2k)(-1)=-4k+8>0得k<2又∵k+1≥0∴k≥-1。即k的取值范围是-1≤k<2
错因剖析:漏掉了二次项系数1-2k≠0这个前提。事实上,当1-2k=0即k=时,原方程变为一次方程,不可能有两个实根。
正解:-1≤k<2且k≠
例4(20__山东太原中考题)已知x1,x2是关于x的一元二次方程x2+(2m+1)x+m2+1=0的两个实数根,当x12+x22=15时,求m的值。
错解:由根与系数的关系得
x1+x2=-(2m+1),x1x2=m2+1,
∵x12+x22=(x1+x2)2-2x1x2
=[-(2m+1)]2-2(m2+1)
=2m2+4m-1
又∵x12+x22=15
∴2m2+4m-1=15
∴m1=-4m2=2
错因剖析:漏掉了一元二次方程有两个实根的前提条件是判别式△≥0。因为当m=-4时,方程为x2-7x+17=0,此时△=(-7)2-4×17×1=-19<0,方程无实数根,不符合题意。
正解:m=2
例5若关于x的方程(m2-1)x2-2(m+2)x+1=0有实数根,求m的取值范围。
错解:△=[-2(m+2)]2-4(m2-1)=16m+20
∵△≥0
∴16m+20≥0,
∴m≥-5/4
又∵m2-1≠0,
∴m≠±1
∴m的取值范围是m≠±1且m≥-
错因剖析:此题只说(m2-1)x2-2(m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。
正解:m的取值范围是m≥-
例6已知二次方程x2+3x+a=0有整数根,a是非负数,求方程的整数根。
错解:∵方程有整数根,
∴△=9-4a>0,则a<2.25
又∵a是非负数,∴a=1或a=2
令a=1,则x=-3±,舍去;令a=2,则x1=-1、x2=-2
∴方程的整数根是x1=-1,x2=-2
错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0,x4=-3
正解:方程的整数根是x1=-1,x2=-2,x3=0,x4=-3
【练习】
练习1、(01济南中考题)已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根x1、x2。
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由。
解:(1)根据题意,得△=(2k-1)2-4k2>0解得k<
∴当k<时,方程有两个不相等的实数根。
(2)存在。
如果方程的两实数根x1、x2互为相反数,则x1+x2=-=0,得k=。经检验k=是方程-的解。
∴当k=时,方程的两实数根x1、x2互为相反数。
读了上面的解题过程,请判断是否有错误?如果有,请指出错误之处,并直接写出正确答案。
解:上面解法错在如下两个方面:
(1)漏掉k≠0,正确答案为:当k<时且k≠0时,方程有两个不相等的实数根。
(2)k=。不满足△>0,正确答案为:不存在实数k,使方程的两实数根互为相反数
练习2(02广州市)当a取什么值时,关于未知数x的方程ax2+4x-1=0只有正实数根?
解:(1)当a=0时,方程为4x-1=0,∴x=
(2)当a≠0时,∵△=16+4a≥0∴a≥-4
∴当a≥-4且a≠0时,方程有实数根。
又因为方程只有正实数根,设为x1,x2,则:
x1+x2=->0;
x1.x2=->0解得:a<0
综上所述,当a=0、a≥-4、a<0时,即当-4≤a≤0时,原方程只有正实数根。
【小结】
以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。
1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。
2、运用根与系数关系时,△≥0是前提条件。
3、条件多面时(如例5、例6)考虑要周全。
【布置作业】
1、当m为何值时,关于x的方程x2+2(m-1)x+m2-9=0有两个正根?
2、已知,关于x的方程mx2-2(m+2)x+m+5=0(m≠0)没有实数根。
求证:关于x的方程
(m-5)x2-2(m+2)x+m=0一定有一个或两个实数根。
考题汇编
1、(20__年广东省中考题)设x1、x2是方程x2-5x+3=0的两个根,不解方程,利用根与系数的关系,求(x1-x2)2的值。
2、(20__年广东省中考题)已知关于x的方程x2-2x+m-1=0
(1)若方程的一个根为1,求m的值。
(2)m=5时,原方程是否有实数根,如果有,求出它的实数根;如果没有,请说明理由。
3、(20__年广东省中考题)已知关于x的方程x2+2(m-2)x+m2=0有两个实数根,且两根的平方和比两根的积大33,求m的值。
4、(20__年广东省中考题)已知x1、x2为方程x2+px+q=0的两个根,且x1+x2=6,x12+x22=20,求p和q的值。
八年级教案数学教案篇5
例题讲解
引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,
1、你有哪些乘车方案?
2、只租8辆车,能否一次把客人都运送走?
问题2;怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量(单位:人/辆)4530
租金(单位:元/辆)400280
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。
分析;
(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。
设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即
y=400x+280(6-x)
化简为:y=120x+1680
讨论:
根据问题中的条件,自变量x的取值应有几种可能?
为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的&39;取值为____。
在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一:
4两甲种客车,2两乙种客车
y1=120×4+1680=2160
方案二:
5两甲种客车,1辆乙种客车