教案吧 > 初中教案 > 八年级教案 >

免费八年级数学教案

时间: 新华 八年级教案

编写教案可以使教师在教学前有充分的准备,免除临时抱佛脚的情况出现。如何写出优秀的免费八年级数学教案?下面给大家分享一些免费八年级数学教案,希望对大家有所帮助。

免费八年级数学教案篇1

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习 教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

免费八年级数学教案篇2

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.

2、会求一组数据的极差.

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差.

2、难点:本节课内容较容易接受,不存在难点.

三、课堂引入:

下表显示的是上海20_年2月下旬和20_年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法.

经计算可以看出,对于2月下旬的这段时间而言,20_年和20_年上海地区的平均气温相等,都是12度.

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图.

观察一下,它们有区别吗?说说你观察得到的结果.

用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range)。

四、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

免费八年级数学教案篇3

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4_2y+2_y2)÷2_y。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21_4y3—35_3y2+7_2y2)÷(—7_2y);

(3)[(_+y)2—y(2_+y)—8_]÷2_;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

免费八年级数学教案篇4

教学目标:

1、在现实情境中,了解全等形的概念及全等三角形的概念及其性质

2、在具体情境中,会使用全等符号“≌”标注两个全等三角形

3、会找出两个全等三角形的对应边和对应角

教学重点:全等三角形的概念及性质

教学难点:找全等三角形对应边和对应角

教学用具:幻灯、全等三角形、剪刀、学具袋

教学过程:

(一)、教学导入

1、问题:在平面内,我们学过哪几种图形的变换?共同的性质是什么?今天我们在它的基础上学习新的内容。

(二)、新授

1、全等形及全等三角形的概念。

A、(幻灯)引出完全重合。

问题:同学们,你能举出生活中完全重合的两个图形的例子吗?

让学生讨论,交流结果,充分肯定学生的思考与发现,教师可列举一些例子。

B、教师归纳

(1)、全等形:能够完全重合的图形。

(2)、全等三角形:能够完全重合的两个三角形。

2、会使用全等符号“≌”标注两个全等三角形和找两全等三角形的对应边和对应角。

A、学生活动:每位同学用剪刀把准备好的全等三角形剪下来,意见和建议

进一步加深概念的理解。

B、教师活动:将剪好的两个全等三角形贴在黑板上,标上顶点字母。

引出:(1)、△ABC全等于△A′B′C′,全等于用“≌”表示,读作“全等于”,记作:△ABC△≌△A′B′C′。

(2)、对应顶点:互相重合的顶点。

对应边:互相重合的边。

对应角:互相重合的角。

学生试结合图,在ABC△≌△A′B′C′中找出对应顶点、对应边和对应角。

C、师生活动:将叠合的两个三角形其中一块沿任意直线作轴反射,摆出这两个全等三角形不同位置的组合图形,并指出对应元素。

D、(幻灯2)出示习题,学生在练习本上完成,做完后与同学交流,教师查巡学生练习的情况,最后师生归纳找对应角,找对应边的方法。

E、(幻灯3)归纳找对应角、找对应边的方法。

3、全等三角形的性质

A、在各种不同的变换下得到图形中,引导学生发现两个全等三角形的位置发生了变化,但他们的对应边、对应角不变,得出下面两条性质:

性质1:全等三角形对应边相等

性质2:全等三角形对应角相等

B、(幻灯4)找出全等三角形中相等的边与相等的角。

三、巩固练习

教材第71页“练习”

四、总结归纳

1、全等形及全等三角形的基本概念

2、会找全等三角形的对应边与对应角

3、全等三角形的性质

免费八年级数学教案篇5

教学目标:

知识与技能

1.掌握直角三角形的判别条件,并能进行简单应用;

2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

教学难点

会辨析哪些问题应用哪个结论.

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△ABC的两边AB=5,AC=12,则BC=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈、如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉、继续尝试:下面的&39;三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

满足a2+b2=c2的三个正整数,称为勾股数.

⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.

⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.

⒋、习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

免费八年级数学教案篇6

一、一般地,用符号"<"(或"≤"),">"(或"≥")连接的式子叫做不等式。

能使不等式成立的未知数的值,叫做不等式的解.不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

二、不等式的基本性质

性质1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

性质2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

性质3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质<1>、若a>b,则a+c>b+c;<2>、若a>b,c>0则ac>bc若c<0,则ac<bc<p="">

不等式的其他性质:反射性:若a>b,则bb,且b>c,则a>c

三、解不等式的步骤:

1、去分母;

2、去括号;

3、移项合并同类项;

4、系数化为1。

四、解不等式组的步骤:

1、解出不等式的解集

2、在同一数轴表示不等式的解集。

五、列一元一次不等式组解实际问题的一般步骤:

(1)审题;

(2)设未知数,找(不等量)关系式;

(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:

1、求4x-67x-12的非负数解.

2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

免费八年级数学教案篇7

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

2、会求一组数据的极差。

二、重点、难点和难点的突破方法:

1、重点:会求一组数据的极差。

2、难点:本节课内容较容易接受,不存在难点。

三、例习题的意图分析:

教材第___页引例的意图。

(1)、主要目的是用来引入极差概念的。

(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量。

(3)、交待了求一组数据极差的方法。

四、课堂引入:

引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。

五、例习题分析:

本节课在教材中没有相应的例题,教材第___页习题分析。

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。

六、随堂练习:

1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是.

2、一组数据3、-1、0、2、_的极差是5,且_为自然数,则_=.

3、下列几个常见统计量中能够反映一组数据波动范围的是()

A.平均数B.中位数C.众数D.极差

4、一组数据_、_…_的极差是8,则另一组数据2_+1、2_+1…,2_+1的极差是()

A.8B.16C.9D.17

答案:1.497、38502.43.D4.B

七、课后练习:

免费八年级数学教案篇8

第三环节:勾股定理的简单应用

内容:

例题如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处.大树在折断之前高多少?

(教师板演解题过程)

练习:

1.基础巩固练习:

求下列图形中未知正方形的面积或未知边的长度(口答):

2.生活中的应用:

小明妈妈买了一部29in(74cm)的电视机.小明量了电视机的屏幕后,发现屏幕只有58cm长和46cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.

效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.

第四环节:课堂小结

内容:

教师提问:

1.这一节课我们一起学习了哪些知识和思想方法?

2.对这些内容你有什么体会?与同伴进行交流.

在学生自由发言的基础上,师生共同总结:

1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,,分别表示直角三角形的两直角边和斜边,那么.

2.方法:(1)观察—探索—猜想—验证—归纳—应用;

(2)“割、补、拼、接”法.

3.思想:(1)特殊—一般—特殊;

(2)数形结合思想.

意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.

效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.

第五环节:布置作业

内容:布置作业:1.教科书习题1.1.

2.观察下图,探究图中三角形的三边长是否满足?

免费八年级数学教案篇9

一、教学目标

1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.

2.继续渗透和培养学生对类比数学思想的认识和理解.

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

4.通过学习,了解由特殊到一般的唯物辩证法的观点.

二、教学设计

类比学习,探讨发现

三、重点及难点

1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.

2.教学难点 :是了解判定定理1的证题方法与思路.

四、课时安排

1课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1.什么叫相似三角形?什么叫相似比?

2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.

[讲解新课]

我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们

来研究能不能用较少的几个条件就能判定三角形相似呢?

上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种方法.

我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形

全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:

问:判定两个三角形全等的方法有哪几种?

答:SAS、ASA(AAS)、SSS、HL.

问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到中应如何说?

答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.

问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?

答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.

(2)用类比方法找出的新命题一定要加以证明.

如图5-53,在△ABC和△ 中, , .

问:△ABC和△ 是否相似?

分析:可采用问答式以启发学生了解证明方法.

问:我们现在已经学习了哪几个判定三角形相似的方法?

答:①三角形的定义,②上一节学习的预备定理.

问:根据本命题条件,探讨时应采用哪种方法?为什么?

答:预备定理,因为用定义条件明显不够.

问:采用预备定理,必须构造出怎样的图形?

答: 或 .

问:应如何添加辅助线,才能构造出上一问的图形?

此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.

(1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.

“作相似.证全等”.

(2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.

(教师向学生解释清楚“或延长线”的情况)

虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

简单说成:两角对应相等,两三角形相似.

例1 已知 和 中 , , , .

求证: ∽ .

此例题是判定定理的直拉应用,应使学生熟练掌握.

例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.

已知:如图5-54,在 中,CD是斜边上的高.

求证: ∽ ∽ .

该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.

即 ∽△∽△.

[小结]

1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.

2.判定定理1的应用以及记住例2的结论并会应用.

七、布置作业

免费八年级数学教案篇10

课型:

复习课

学习目标(学习重点):

1.针对函数及其图象一章,查漏补缺,答疑解惑;

2.一次函数应用的复习.

补充例题:

例1.如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

(1)B出发时与A相距千米;

(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时;

(3)B出发后小时与A相遇;

(4)求出A行走的路程S与时间t的函数关系式;

(5)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米,在图中表示出这个相遇点C.

例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a,b的值.

例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

(1)求s与t之间的函数关系式.

(2)与图③相对应的P点的运动路径是:;P点出发秒首次到达点B;

(3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

课后续助:

1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

①用水量小于等于3000吨;②用水量大于3000吨.

(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元.

(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

(1)有月租费的收费方式是(填①或②),月租费是元;

(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

3.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。结合风速与时间的图像,回答下列问题:

(1)在y轴()内填入相应的数值;

(2)沙尘暴从发生到结束,共经过多少小时?

(3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

免费八年级数学教案篇11

第二环节:探索发现勾股定理

1.探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

2.探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3.议一议

内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,分别表示直角三角形的两直角边和斜边,那么。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。

免费八年级数学教案篇12

教学目标

1·等腰三角形的概念·2·等腰三角形的性质·3·等腰三角形的概念及性质的应用。

教学重点:1·等腰三角形的概念及性质·2·等腰三角形性质的应用。

教学难点:等腰三角形三线合一的性质的理解及其应用。

教学过程

Ⅰ·提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的.图案·这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形·来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是·

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形·

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形·

Ⅱ·导入新课:要求学生通过自己的思考来做一个等腰三角形·

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形·

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形·相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角·同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角·

思考:

1·等腰三角形是轴对称图形吗?请找出它的对称轴·

2·等腰三角形的两底角有什么关系?

3·顶角的平分线所在的直线是等腰三角形的对称轴吗?

4·底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形·它的对称轴是顶角的平分线所在的直线·因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线·

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系·

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高·

由此可以得到等腰三角形的性质:

1·等腰三角形的两个底角相等(简写成“等边对等角”)·

2·等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)·

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质·同学们现在就动手来写出这些证明过程)·

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS)·

所以∠B=∠C·

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD·

所以BD=CD,∠BDA=∠CDA=∠BDC=90°·

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数·

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A·

再由三角形内角和为180°,就可求出△ABC的三个内角·

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷·

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC·

∠A=∠ABD(等边对等角)·

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x·

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°·在△ABC中,∠A=35°,∠ABC=∠C=72°·

[师]下面我们通过练习来巩固这节课所学的知识·

Ⅲ·随堂练习:1·课本P51练习1、2、3·2·阅读课本P49~P51,然后小结·

Ⅳ·课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用·等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高·

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们·

Ⅴ·作业:课本P56习题12·3第1、2、3、4题·

板书设计

12·3·1·1等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质:1·等边对等角2·三线合一

免费八年级数学教案篇13

《正弦和余弦》

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

(三)德育渗透点

培养学生独立思考、勇于创新的精神。

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤

(一)明确目标

1.复习提问

(1)什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题。

(二)整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦。

(2)把sin(90°-A)写成∠A的余弦。

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3。

学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备。

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。

免费八年级数学教案篇14

一、学习目标

1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式。

难点:将单项式化为平方形式,再用平方差公式分解因式。

学习方法:归纳、概括、总结。

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

1.请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2.公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

补充例题:判断下列分解因式是否正确。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、课堂练习

教科书练习。

六、作业

1、教科书习题。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

免费八年级数学教案篇15

教学目标:

1、知道负整数指数幂=(a≠0,n是正整数)、

2、掌握整数指数幂的运算性质、

3、会用科学计数法表示小于1的数、

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

教学过程:

一、课堂引入

1、回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2、回忆0指数幂的规定,即当a≠0时,a0=1、

3、你还记得1纳米=10?9米,即1纳米=米吗?

4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的、

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012=1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012=1。2×10?2,0。0012=1。2×10?3,0。00012=1。2×10?4,以此发现其中的规律,从而有0。0000000012=1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

21248