教案吧 > 初中教案 > 八年级教案 >

教案初二数学电子版

时间: 新华 八年级教案

教案可以帮助教师了解学生的学习情况和需求,以便更好地满足学生的学习需求,从而提高学生的学习效果和自信心。这里给大家分享教案初二数学电子版,方便大家写教案初二数学电子版时参考。

教案初二数学电子版篇1

一、学习目标:1.多项式除以单项式的运算法则及其应用.

2.多项式除以单项式的运算算理.

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提问:①说说你是怎样计算的②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

E、多项式除以单项式法则

教案初二数学电子版篇2

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力.

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用.

2.难点:灵活地应用公式法进行因式分解.

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:

(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;

(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

三、随堂练习,巩固深化

课本P170练习第1、2题.

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

五、布置作业,专题突破

教案初二数学电子版篇3

设计意图

认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育是幼儿数学教育的重点内容。学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。根据小班幼儿的思维特点和活泼好动的性格,我将三角形的图形特征编成简短的故事,再结合图形拼摆,让孩子在玩中学、学中乐、乐中做。使幼儿养成动手、动口、动脑的好习惯,培养幼儿的创新意识。

活动目标

1、知道三角形的主要特征,即三角形由三条边,三个角组成。

2、能找出生活中和三角形相似的物体。

3、发展幼儿逻辑思维能力。

4、乐意参与活动,体验成功后的乐趣。

活动准备

1、小白兔、萝卜、蘑菇图片各一个,

2、图形组成的实物图片4张。

3、孩子人手3个三角形。

活动过程

一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。

二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。

三、引导幼儿观察比较图形,幼儿每人一个三角形。

1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

2、老师小结三角形特征,使幼儿获得的知识完整化。

四、复习巩固三角形的特征

1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。

并一一出示三角形,并说出为什么?

2、观察图形拼图,找出三角形,数一数用了几个三角形?

3、请幼儿在周围环境中找出象三角形的东西。

活动反思:

小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。

教案初二数学电子版篇4

理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.

复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.

重点

求根公式的推导和公式法的应用.

难点

一元二次方程求根公式的推导.

一、复习引入

1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提问1 这种解法的(理论)依据是什么?

提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)

2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)

(学生活动)用配方法解方程 2x2+3=7x

(老师点评)略

总结用配方法解一元二次方程的步骤(学生总结,老师点评).

(1)先将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.

问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)

分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

二次项系数化为1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接开平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有两个实数根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.

补:(5)(x-2)(3x-5)=0

三、巩固练习

教材第12页 练习1.(1)(3)(5)或(2)(4)(6).

四、课堂小结

本节课应掌握:

(1)求根公式的概念及其推导过程;

(2)公式法的概念;

(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.

(4)初步了解一元二次方程根的情况.

五、作业布置

教材第17页 习题4

教案初二数学电子版篇5

一、学习目标:1.经历探索平方差公式的过程.

2.会推导平方差公式,并能运用公式进行简单的运算.

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式.

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x-1)(2)(m+2)(m-2)

(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差.

即:(a+b)(a-b)=a2-b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)

例2:计算:

(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)

随堂练习

计算:

(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)

五、小结:(a+b)(a-b)=a2-b2

第三十五学时:4.2.2.完全平方公式(一)

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用

难点:理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2

例2、用完全平方公式计算:

(1)1022(2)992

随堂练习

第三十六学时:14.2.2完全平方公式(二)

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重点:理解添括号法则,进一步熟悉乘法公式的合理利用

难点:在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+()(2)a-b+c=a-()

(3)a-b-c=a-()(4)a+b+c=a-()

2.判断下列运算是否正确.

(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2

(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

教案初二数学电子版篇6

教学内容:

《义务教育课程标准实验教科书数学》五年级下册5-6页。

教学目标:

1、进一步认识图形的旋转变换,探索图形旋转的牲和性质。

2、能在方格纸上将简单的图形旋转90度。

3、初步学会运用旋转的方法在方格纸上设计图案,发展空间观念。

4、欣赏图形的旋转变换所创造出的美,培养审美能力,感受旋转在生活中的应用,体会数学的价值。

教学准备:

多媒体课件,每4人或6人小组,一个风车实物模型。

教学过程:

一、联系生活,引入新课。

师:上节课,我们认识了生活中的轴对称变换,其实,图形的变换还有许多种,比如:平移,旋转等等。这节课,我们就一起来研究生活中的旋转变换。

生活中你见过哪些旋转现象?

二、认识图形的旋转,探索图形旋转牲与性质。

1、认识线段的旋转,理解旋转含义。

(1)观察,描述旋转现象。

①多媒体课件出示钟表,播放动画(指针从“12”指向“1”。

师:请同学们仔细观察指针的旋转过程。谁能说一说是怎样旋转的?

引导学生叙述:指针绕○顺时针旋转到30度到“1”。

板书:指针从“12”绕点○顺时针旋转30度到“1”。

师:想一想,为什么指针从12指向1就旋转了30度?指针走1个字旋转了多少度?2个字呢?你觉得怎样的旋转是顺时针?怎样的旋转是逆时针?

②多媒体课件出示钟表,播放动画。(指针从“1”指向“3”)

师:这次指针是如何旋转的?

引导学生叙述:指针从“1”绕○顺时针旋转60度到“3”。

③如果指针从“3”继续绕○顺时针旋转90度会指向几呢?

学生回答后多媒体课件示钟表,播放动画给予验证。

④如果指针从“6”继续绕点○顺时针旋转180度会指向几呢?

学生回答后多媒体课件出示钟晴,播放动画给予验证。

(2)小结

小结:要把一个旋转现象描述清楚,不仅要说清楚它的起止位置,更重要的要说清楚旋转围绕的点方向以及角度。

2、认识图形的旋转,探究旋转的牲和性质。

(1)观察风车的旋转过程。

①师:这是什么图形?风车的旋转你见过吗?看!在风的吹动下,风车就要旋转起来了。

多媒体课件出示风车,播放动画。(风车旋转起来了)

②师:请注意观察风车是怎样旋转的?

多媒体课件出示风车,播放动画。

师:从图1到图2,发生了怎样的变化呢?

③师:风车从图1绕点○逆时针旋转多少度到图2呢?怎样才能知道风车旋转的角度呢?

④交流得出:风车从图1绕点○逆时旋转90度到图2。(板书)怎样才能知道风车旋转的角度呢?

(2)继续观察风车的旋转。

师:如果我们将风车在图2的基础上,继续绕点○逆时针旋转到图3,风车旋转了多少度?

(3)揭示旋转后,什么发生了变化,什么没有变化呢?

得出结论:三角形的位置变了,三角形的形状、大小、点○的位置,对应线段的长度,对应线段的夹角没有变。

三、绘制图形,体验图形旋转的过程。

师:我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?

1、出示例4方格图,与学生一起明确画图要求;

2、学生在方格纸上自主完成;

3、作品展示,交流画法;

4、小结画法。

根据旋转的性质,旋转图形对应线段的长度不变,对应线段的夹角不变,我们在画一个旋转图形时,可以首先确定对应线段,然后连线。

四、欣赏图形的旋转变换,感受旋转创造出的美。

1、师:生活中,有很多美丽的图案都是由一些简单的图形旋转而来的,请欣赏第5页第1题,这些图形分别是由哪个图形旋转而来的呢?

多媒体课件出示动画,演示图形的旋转。

2、利用旋转画一条小花。

学生自主画,然后交流,你是怎样画的?

五、全课总结。

师:通过这节课的学习,你有哪些收获和体会呢?

布置作业:第9页第4、5题。

教案初二数学电子版篇7

教学目标:

1.知道换算关系

2.会写数读数

巩固数感

教学重难点:会写数读数

教学过程:

1、我们学过了计数器上从右向左依次是:个位、十位、百位、千位、万位。其中位是万位、最低位是个位。

2、10个1是10,10个10是100,10个100是1000,10个1000是10000。

3、你还能用自己的话说说吗?

4、数一数

10个10个的数,从2630数到3480

100个100个的数,从8300数到10000。

1000个1000个的数,从1000数到10000。

5、读数

8267932792072003900010000368083007048

读数的时候应该注意什么?

6、写数

一万一千一千九百三千零五十千零九两千一百零八

六千零一十四千零五十八

7、2046420614261562

这四个数中的2有什么不同?

8、一个数千位上是6,百位上是5,十位上是6,这个数是(),读作()。

一个数千位上是5,百位上是7,个位上是8,这个数是(),读作()

一个数个位上是6,百位上是5,十位上是6,这个数是(),读作()

一个数有5个千,6个百,6个十,这个数是()

一个数有6个千,3个1,这个数是()

一个数有10个1000,这个数是()

一个一个的数,跟1000相邻的两个数是()()

十个十个的数,跟1000相邻的两个数是()()

一百个一百个的数,跟1000相邻的两个数是()()

500和900比,()离600更近。

板书设计:各练习题

课后小结:

教案初二数学电子版篇8

我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.

教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.

本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.

根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.

三维目标

1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.

2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.

3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.

4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.

重点难点

教学重点

(1)分数指数幂和根式概念的理解.

(2)掌握并运用分数指数幂的运算性质.

(3)运用有理指数幂的性质进行化简、求值.

教学难点

(1)分数指数幂及根式概念的理解.

(2)有理指数幂性质的灵活应用.

课时安排

3课时

教学过程

第1课时

作者:路致芳

导入新课

思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.

思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.

推进新课

新知探究

提出问题

(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

(3)根据上面的结论我们能得到一般性的结论吗?

(4)可否用一个式子表达呢?

活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.

讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.

(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.

(4)用一个式子表达是,若xn=a,则x叫a的n次方根.

教师板书n次方根的意义:

一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N.

可以看出数的平方根、立方根的概念是n次方根的概念的特例.

提出问题

(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

(4)任何一个数a的偶次方根是否存在呢?

活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.

讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.

(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.

(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.

类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).

②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.

③负数没有偶次方根;0的任何次方根都是零.

上面的文字语言可用下面的式子表示:

a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在.

零的n次方根为零,记为n0=0.

可以看出数的平方根、立方根的性质是n次方根的性质的特例.

思考

根据n次方根的性质能否举例说明上述几种情况?

活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.

解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.

根式的概念:

式子na叫做根式,其中a叫做被开方数,n叫做根指数.

如3-27中,3叫根指数,-27叫被开方数.

思考

nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.

〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.

解答:根据n次方根的意义,可得:(na)n=a.

通过探究得到:n为奇数,nan=a.

n为偶数,nan=a=a,-a,a≥0,a<0.

因此我们得到n次方根的运算性质:

①(na)n=a.先开方,再乘方(同次),结果为被开方数.

②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.

n为偶数,nan=a=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.

应用示例

思路1

例求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.

变式训练

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.

思路2

例1下列各式中正确的是()

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.

解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=a,故A项错.

(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.

(3)a0=1是有条件的,即a≠0,故C项也错.

(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.

答案:D

点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.

例23+22+3-22=__________.

活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.

解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.

思考

上面的例2还有别的解法吗?

活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.

另解:利用整体思想,x=3+22+3-22,

两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.

变式训练

若a2-2a+1=a-1,求a的取值范围.

解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,

即a-1≥0,

所以a≥1.

教案初二数学电子版篇9

教学目标:

1、通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;

2、掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴

3、培养和发展学生的实验操作能力,发现美和创造美的能力。

重点难点:

会利用轴对称的知识画对称图形。

教学方法:

1、创设情景,引发思维。

2、组织讨论,深化思维。

3、加强练习,发展思维。

预习作业:

1、欣赏P1的图片,你发现了这些图形有什么相同点和不同点?

2、同桌互相说说什么样的图形叫作轴对称图形?

3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?

4、试着在例2的格子图片上画一画

5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?

教学过程:

一、复习引入

1、轴对称图形的概念

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

2、通过例题探究轴对称图形的性质

二、例题1

你能发现什么规律。

三、交流

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

四、教学画对称图形。

例题2

1、在研究的基础上,让学生用铅笔试画。

2、通过课件演示画的全过程,帮助学生纠正不足。

五、练习

1、欣赏下面的图形,并找出各个图形的对称轴。

2、学生相互交流

你们还见过哪些轴对称图形?

用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,

(1)思考

A、怎样画?先画什么?再画什么?

B、每条线段都应该画多长?

3、课内练习一-----第1、2题。

4、课外作业:通过丰富的轴对称图形与轴对称的实例,让学生欣赏并体会轴对称,发展学生的审美能力、鉴赏能力,更激发了学习数学的兴趣

5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数

学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。

板书设计:

轴对称

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

教案初二数学电子版篇10

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:

探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:

找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价—成本;=商品利润率

二、新授

问:小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息—利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例:一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%—x

由等量关系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

教案初二数学电子版篇11

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学方法:

归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的.算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:

复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:

复习题B组、C组(选做)

教案初二数学电子版篇12

一、内容和内容解析

1.内容

二次根式的性质。

2.内容解析

本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

二、目标和目标解析

1.教学目标

(1)经历探索二次根式的性质的过程,并理解其意义;

(2)会运用二次根式的性质进行二次根式的化简;

(3)了解代数式的概念.

2.目标解析

(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

(2)学生能灵活运用二次根式的性质进行二次根式的化简;

(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

三、教学问题诊断分析

二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

本节课的教学难点为:二次根式性质的灵活运用.

四、教学过程设计

1.探究性质1

问题1你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

问题2根据算术平方根的意义填空,并说出得到结论的依据.

师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

问题3从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质:(≥0).

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

例2计算

(1);(2).

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质1,学会灵活运用.

2.探究性质2

问题4你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

问题5根据算术平方根的意义填空,并说出得到结论的依据.

师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

问题6从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质:(≥0)

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

例3计算

(1);(2).

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质2,学会灵活运用.

3.归纳代数式的概念

问题7回顾我们学过的式子,如,(≥0),这些式子有哪些共同特征?

师生活动:学生概括式子的共同特征,得出代数式的概念.

【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

4.综合运用

(1)算一算:

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?

【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.

(3)谈一谈你对与的认识.

【设计意图】加深学生对二次根式性质的理解.

5.总结反思

(1)你知道了二次根式的哪些性质?

(2)运用二次根式性质进行化简需要注意什么?

(3)请谈谈发现二次根式性质的思考过程?

(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

6.布置作业:教科书习题16.1第2,4题.

五、目标检测设计

1.;;.

【设计意图】考查对二次根式性质的理解.

2.下列运算正确的是()

A.B.C.D.

【设计意图】考查学生运用二次根式的性质进行化简的能力.

3.若,则的取值范围是.

【设计意图】考查学生对一个数非负数的算术平方根的理解.

4.计算:.

【设计意图】考查二次根式性质的灵活运用.

教案初二数学电子版篇13

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程

一、回顾交流,导入新知

【问题牵引】

1.分解因式:

(1)-9x2+4y2;

(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知识迁移】

2.计算下列各式:

(1)(m-4n)2;

(2)(m+4n)2;

(3)(a+b)2;

(4)(a-b)2.

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:

(1)m2-8mn+16n2

(2)m2+8mn+16n2;

(3)a2+2ab+b2;

(4)a2-2ab+b2.

【学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;

(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。

三、随堂练习,巩固深化

课本P170练习第1、2题。

【探研时空】

1.已知x+y=7,xy=10,求下列各式的值。

(1)x2+y2;

(2)(x-y)2

2.已知x+=-3,求x4+的值。

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2。

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。

五、布置作业,专题突破

教案初二数学电子版篇14

方差

一. 教学目标:

1. 了解方差的定义和计算公式。

2. 理解方差概念的产生和形成的过程。

3. 会用方差计算公式来比较两组数据的波动大小。

二. 重点、难点和难点的突破方法:

1. 重点:方差产生的必要性和应用方差公式解决实际问题。

2. 难点:理解方差公式

3. 难点的突破方法:

方差公式:S = [( - ) +( - ) +…+( - ) ]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

(3)第三环节 教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

三. 例习题的意图分析:

1. 教材P125的讨论问题的意图:

(1).创设问题情境,引起学生的学习兴趣和好奇心。

(2).为引入方差概念和方差计算公式作铺垫。

(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。

(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

2. 教材P154例1的设计意图:

(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

四.课堂引入:

除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

五. 例题的分析:

教材P154例1在分析过程中应抓住以下几点:

1. 题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

2. 在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

3. 方差怎样去体现波动大小?

这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

六. 随堂练习:

1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

问:(1)哪种农作物的苗长的比较高?

(2)哪种农作物的苗长得比较整齐?

2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

测试次数 1 2 3 4 5

段巍 13 14 13 12 13

金志强 10 13 16 14 12

参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

2.段巍的成绩比金志强的成绩要稳定。

七. 课后练习:

1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

经过计算,两人射击环数的平均数相同,但S S ,所以确定 去参加比赛。

3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

4. 小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

选择小兵参加比赛。

教案初二数学电子版篇15

一、学情分析

本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十七章分式

本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十八章函数及其图像

函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十九章全等三角形

本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。

第二十章平行四边形的判定

本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。

第二十一章数据的整理与初步处理

本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、培养学生学习数学的良好习惯。这些习惯包括:

①认真做作业的习?包括作业前清理好桌面,作业后认真检查;

②预习的习惯;

③认真看批改后的作业并及时更正的习惯;

④认真做好课前准备的习惯;

⑤在书上作精要笔记的习惯;

⑥妥善保管书籍资料和学习用品的习惯;

⑦认真阅读数学教材的习惯。

教案初二数学电子版篇16

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

教案初二数学电子版篇17

教学目标

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程

(一)复习引入

1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境

现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

怎样解这类方程:2x2-4x-6=0

(三)探究新知

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题

1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知

课本P.15,练习。

(六)课堂小结

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解

一元二次方程的算法。

(七)思考与拓展

不解方程,只通过配方判定下列方程解的

情况。

(1)4x2+4x+1=0;(2)x2-2x-5=0;

(3)–x2+2x-5=0;

[解]把各方程分别配方得

(1)(x+)2=0;

(2)(x-1)2=6;

(3)(x-1)2=-4

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

教案初二数学电子版篇18

教学目标

1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

教学重点和难点

重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

难点:不等式的解集的概念.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

2.用不等式表示:

(1)x的3倍大于1; (2)y与5的差大于零;

(3)x与3的和小于6; (4)x的小于2.

(3)当x取下列数值时,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)两题用投影仪打在屏幕上)

一、讲授新课

1.引导学生运用对比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向学生提出如下问题:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

不等式一般有无限多个解.

求不等式的解集的过程,叫做解不等式.

3.启发学生如何在数轴上表示不等式的解集

我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

三、应用举例,变式练习

例1 在数轴上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.

解(1),(2),(3)略.

(4)在数轴上表示1≤x≤4,如下图

(5)在数轴上表示-2<x≤3,如下图< p="">

(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

例2 用不等式表示下列数量关系,再用数轴表示出来:

(1)x小于-1; (2)x不小于-1;

(3)a是正数; (4)b是非负数.

解:(1)x小于-1表示为x<-1;(用数轴表示略)

(2)x不小于-1表示为x≥-1;(用数轴表示略)

(3)a是正数表示为a>0;(用数轴表示略)

(4)b是非负数表示为b≥0.(用数轴表示略)

(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)

例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

(2)在数轴上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.

(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

自然数解是什么?(表示选作题)

四、师生共同小结

针对本节课所学内容,请学生回答以下问题:

1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

3.记号“≥”、“≤”各表示什么含义?

4.在数轴上表示不等式解集时应注意什么?

结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

五、作业

1.不等式x+3≤6的解集是什么?

2.在数轴上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">

(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.

3.求不等式x+2<5的正整数解.

课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

教案初二数学电子版篇19

【教学目标】

知识与技能

会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法

经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观

通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】

一、创设情境,故事引入

【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事

【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论

【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

二、范例学习,应用所学

【教师讲述】

平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。

例1:运用平方差公式计算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

《乘法公式》同步练习

二、填空题

5、幂的乘方,底数______,指数______,用字母表示这个性质是______。

6、若32×83=2n,则n=______。

《乘法公式》同步测试题

25、利用正方形的面积公式和梯形的面积公式即可求解;

根据所得的两个式子相等即可得到。

此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。

26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;

等式左边减数的底数与序号相同,由此得出第n个式子;

教案初二数学电子版篇20

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式.

难点:将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2(1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b)(2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习教科书练习

六、作业1、教科书习题

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

21498