教案吧 > 初中教案 > 八年级教案 >

创新教案八年级数学下册

时间: 新华 八年级教案

编写教案有助于教师更好地准备教学,提高教学质量和效果。写好创新教案八年级数学下册不是那么简单,下面给大家分享创新教案八年级数学下册,供大家参考。

创新教案八年级数学下册篇1

第11章平面直角坐标系

11。1平面上点的坐标

第1课时平面上点的坐标(一)

教学目标

【知识与技能】

1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】

1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】

通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点

【重点】

认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】

理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程

一、创设情境、导入新知

师:如果让你描述自己在班级中的位置,你会怎么说?

生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知

师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体

的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?

生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?

生:用一个有序的实数对来表示。

师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

生:可以。

教师在黑板上作图:

我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

学生操作,教师巡视。教师指正学生易犯的错误。

教师边操作边讲解:

如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

教师多媒体出示:

师:如图,请同学们写出A、B、C、D这四点的坐标。

生甲:A点的坐标是(—5,4)。

生乙:B点的坐标是(—3,—2)。

生丙:C点的坐标是(4,0)。

生丁:D点的坐标是(0,—6)。

师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

教师边操作边讲解:

在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

学生动手作图,教师巡视指导。

三、深入探究,层层推进

师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

生:都一样。

师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?

生:能,在第二象限。

四、练习新知

师:现在我给出几个点,你们判断一下它们分别在哪个象限。

教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A点在第三象限。

生乙:B点在第四象限。

生丙:C点不属于任何一个象限,它在y轴上。

生丁:D点不属于任何一个象限,它在x轴上。

师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

学生作图,教师巡视,并予以指导。

五、课堂小结

师:本节课你学到了哪些新的知识?

生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

教师补充完善。

教学反思

物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。

第2课时平面上点的坐标(二)

教学目标

【知识与技能】

进一步学习和应用平面直角坐标系,认识坐标系中的图形。

【过程与方法】

通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。

【情感、态度与价值观】

培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。

重点难点

【重点】

理解平面上的点连接成的图形,计算围成的图形的面积。

【难点】

不规则图形面积的求法。

教学过程

一、创设情境,导入新知

师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。

学生作图。

教师边操作边讲解:

二、合作探究,获取新知

师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?

生甲:三角形。

生乙:直角三角形。

师:你能计算出它的面积吗?

生:能。

教师挑一名学生:你是怎样算的呢?

生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。

师:很好!

教师边操作边讲解:

大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么

图形?

学生完成操作后回答:平行四边形。

师:你能计算它的面积吗?

生:能。

教师挑一名学生:你是怎么计算的呢?

生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:

教师多媒体出示下图:

创新教案八年级数学下册篇2

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

创新教案八年级数学下册篇3

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的.分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

创新教案八年级数学下册篇4

一、学生起点分析

学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。

学生活动经验 基础:学生在本 章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。

二、学习任务分析

本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课 的教学目标是:

1. 知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。

2. 过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。

3. 情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。

三、教学过程设计

本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:归纳知识结构

内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?

留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:

目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。

注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。

第二环节:回顾重点内容[

内容:引导学生根据网络结构图,把重点知识内容再回顾一下:

1. 平均数、中位数、众数的概念及举例

一般地,对于n个数x1,x2,…,xn,我们把 (x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。新$课$标$第$一$网

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两

个数据的平均数)叫做这组数据的中位数。

一组数据中出现次数最多的那个数据叫做这组数据的众数。

2. 平均数、中位数、众数的特征

(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。

(2)平均数能充分利用数据提供 的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。

3. 算术平均数和加权平均数的联系与区别及举例

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4. 加权平均数中权的差异对平均数的影响及举例

在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。

5. 利用计算器求一组数据的平均数

目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。

注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛; 一个能用数学思维思考世界的头脑。

第三环节:综合运用提高

内容:1. 从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):

400.0 400.3 401.2 398.9 399.8

399.8 400.0 400.5 399.7 399.8

利用计算器求出这10个零件的平均质量。

2. 某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

3. 某公司销售部有营销人员15人,销售部为了制定某种商品的月 销售量,统计了这15人某月的销售量如下:

每人销售件数 1800 510 250 210 150w 120

人 数 1 1 3 5 3 2[

(1)求这15位营销人员该月销售量的平均数、中位数和众数;

(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。

4.下图反映了甲、乙两班学生的体育成绩。

(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?

(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?

(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?

(4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?

目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算 平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。

注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特 别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。

对本章知识技能的 评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。

第四环节:课堂小结

内容:1. 本章知识结构和重点内容。

2. 综合运用统计知识解决实际问题。

3. 整理归纳知识的方法,勤于思考、善于总结的好习惯。

目的:围绕本节课的教学目标,进行知识、方法、能力 、习惯全方位的小结,目的是为了学生的全面发展。

注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。

第五环节:布置作业

1. 课本本章复习题。

2. 在数学成长本上进行本章的小结与反思。

四、教学反思

1. 华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。

2. 一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。

3. 复习课 不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。

创新教案八年级数学下册篇5

用“平方差公式”分解因式

一、学习目标:1·使学生了解运用公式法分解因式的意义;

2·使学生掌握用平方差公式分解因式

二、重点难点

重点:掌握运用平方差公式分解因式·

难点:将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式·

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法·

1·请看乘法公式

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

左边是一个多项式,右边是整式的乘积·大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式·

a2—b2=(a+b)(a—b)

2·公式讲解

如x2—16

=(x)2—42

=(x+4)(x—4)·

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2·

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x·

补充例题:判断下列分解因式是否正确·

(1)(a+b)2—c2=a2+2ab+b2—c2·

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)·

五、课堂练习教科书练习

六、作业1、教科书习题

2、分解因式:x4—16x3—4x4x2—(y—z)2

3、若x2—y2=30,x—y=—5求x+y

创新教案八年级数学下册篇6

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤。

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法。

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型。

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气,树立自信心,并鼓励学生合作交流,培养学生的团队精神.

教学重点

1.初步体会列方程组解决实际问题的步骤。

2.学会用图表分析较复杂的数量关系问题。

教学难点

将实际问题转化成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是,十位数字是,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。

(2)一个两位数,个位上的数为,十位上的数为,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为。

(3)有两个两位数 和,如果将放在的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将放在的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1。这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数。

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤。

第六环节:布置作业

内容:习题7.6

A组(优等生)2,3,4

B组(中等生)2、3

C组(后三分之一生)2

21520