八年级下册数学电子版教案
教案的编写应注重简洁明了、重点突出、条理清晰、可操作性强等特点,以便更好地指导教学工作。什么才算好的八年级下册数学电子版教案?接下来给大家分享一些八年级下册数学电子版教案,供大家参考。
八年级下册数学电子版教案篇1
1、教材分析
(1)知识结构
(2)重点、难点分析
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
2、教法建议
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
(1)参与探索发现,领略知识形成过程
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
(2)采用“类比”的学习方法,获取逆定理
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.
八年级下册数学电子版教案篇2
教材分析
1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
八年级下册数学电子版教案篇3
第二章一元一次不等式与一元一次不等式组
1、不等关系
2、不等式的基本性质
①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变
②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变
③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变
3、不等式的解集
①能使不等式成立的未知数的值,叫做不等式的解
②一个含有不等式所有的解,组成这个不等式的解集
③求不等式解集的过程叫做解不等式
4、一元一次不等式
①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的次数是1
5、一元一次不等式与一次函数
6、一元一次不等式组
①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组
②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组
八年级下册数学电子版教案篇4
学习目标:
(1)了解运用公式法分解因式的意义;
(2)会用完全平方公式进行因式分解;
(3)清楚优先提取公因式,然后考虑用公式
中考考点:正向、逆向运用公式,特别是配方法是必考点。
预习作业:
1. 完全平方公式字母表示: .
2、形如或的式子称为
3. 结构特征:项数、次数、系数、符号
填空:
(1)(a+b)(a-b) = ;
(2)(a+b)2= ;
(3)(a–b)2= ;
根据上面式子填空:
(1)a2–b2= ;
(2)a2–2ab+b2= ;
(3)a2+2ab+b2= ;
结 论:形如a2+2ab+b2 与a2–2ab+b2的式子称为完全平方式.
a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2
完全平方公式特点:首平方,尾平方,积的2倍在中央,符号看前方。
例1: 把下列各式因式分解:
(1)x2–4x+4 (2)9a2+6ab+b2
(3)m2– (4)
例2、将下列各式因式分解:
(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy
注:优先提取公因式,然后考虑用公式
例3: 分解因式
(1) (2)
(3) (4)
点拨:把 分解因式时:
1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同
2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数P的符号相同
3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P
变式练习:
(1) (2)
(3)
借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,
叫做十字相乘法
口诀:首尾拆,交叉乘,凑中间。
拓展训练:
若把代数式化为的形式,其中m,k为常数,求m+k的值
已知,求x,y的值
当x为何值时,多项式取得最小值,其最小值为多少?
回顾与思考
学习目标:
(1)提高因式分解的基本运算技能
(2)能熟练进行因式分解方法的综合运用.
学习准备:
1、把一个多项式化成 的形式,叫做把这个多项式分解因式。
要弄清楚分解因式的概念,应把握如下特点:
(1)结果一定是 的形式;
(2)每个因式都是 ;
(3)各因式一定要分解到 为止。
2、分解因式与 是互逆关系。
3、分解因式常用的方法有:
(1)提公因式法:
(2)应用公式法:①平方差公式: ②完全平方公式:
(3)分组分解法:am+an+bm+bn=
(4)十字相乘法:=
4、分解因式步骤:
(1)首先考虑提取 ,然后再考虑套公式;
(2)对于二次三项式联想到平方差公式因式分解;
(3)对于二次三项式联想到完全平方公式,若不行再考虑十字相乘法分解因式;
(4)超过三项的多项式考虑分组分解;
(5)分解完毕不要大意,检查是否分解彻底。
辨析题:
1、下列哪些式子的变形是因式分解?
(1)x2–4y2=(x+2y)(x–2y)
(3)4m2–6mn+9n2 =2m(2m–3n)+9n2
(4)m2+6mn+9n2=(m+3n)2
2、把下列各式分解因式:
(1)7x2–63 (2)(x+y)2–14(x+y)+49
(3) (4)(a2+4)2–16a2
(5) (6)
(7) (8)
想一想
计算:
1、32004–32003 2、(–2)101+(–2)100
3、已知 ,求的值.
例1: 把下列各式因式分解(分组后能提公因式)
(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx
(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m
点拨:
1、用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法
2、运算律(如加法交换律、分配律)在因式分解中起着重要的作用
八年级下册数学电子版教案篇5
一、学生起点分析
通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.
二、教学任务分析
《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.
本节课的教学目标是:
①通过拼图活动,让学生感受客观世界中无理数的存在;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;
④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;
三、教学过程设计
本节课设计了6个教学环节:
第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.
效果:为后续环节的进行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.
效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】:已知,请问:①可能是整数吗?②可能是分数吗?
【释一释】:释1.满足的为什么不是整数?
释2.满足的为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段
目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣
效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段
2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形(右1)
2.三边长都是有理数
2.只有两边长是有理数
3.只有一边长是有理数
4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足的
解:(右2)
仿:在数轴上表示满足的
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)
目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上
效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容:
1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:学生总结、相互补充,学会进行概括总结.
第六环节:布置作业
习题2.1
六、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
八年级下册数学电子版教案篇6
教学目标
1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.
教学重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.
教学难点:等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则 ∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1 等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角 2.三线合一
12.3.1.1