八年级上册数学教案反思
编写教案可以帮助教师更好地掌握教学内容,规划教学流程,增强教学自信心。八年级上册数学教案反思应该写成什么样的?快来看看八年级上册数学教案反思,本文为你提供八年级上册数学教案反思写作技巧和示例!
八年级上册数学教案反思篇1
一,内容综述:
1、解分式方程的基本思想
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程。即分式方程整式方程
2、解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0。
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答
(2)换元法
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。
用换元法解分式方程的一般步骤:
(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;
(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
(iii)把辅助未知数的值代回原设中,求出原未知数的值;
(iv)检验做答。
注意:
(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。
(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。
(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。
八年级上册数学教案反思篇2
教材分析
1本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
学情分析
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
教学目标
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
教学重点和难点
重点:能运用完全平方公式进行简单的计算。
难点:会推导完全平方公式
教学过程
教学过程设计如下:
〈一〉、提出问题
[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答]分组交流、讨论
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答]总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答]完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判断:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、一现身手
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1)公式右边共有3项。
(2)两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、探险之旅
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
板书设计
完全平方公式
两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)2=a2+2ab+b2;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2
八年级上册数学教案反思篇3
一、教学分析
1、教学内容分析
本节课是新人教版教材《数学》八年级上册第11.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的内容包括角平分线的作法。角平分线的性质及初步应用。作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。因此,本节内容在数学知识体系中起到了承上启下的作用。同时教材的安排由浅入深。由易到难。知识结构合理,符合学生的心理特点和认知规律。
2、教学对象分析
刚进入初二的学生观察。操作。猜想能力较强,但归纳。运用数学意识的思想比较薄弱,思维的广阔性。敏捷性。灵活性比较欠缺,需要在课堂教学中进一步加强引导。根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础。
二、教学目标
1、知识与技能:
(1)掌握用尺规作已知角的平分线的方法。
(2)理解角的平分线的性质并能初步运用。
2、数学思考:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
3、解决问题:
(1)初步了解角的平分线的性质在生产。生活中的应用。
(2)培养学生的数学建模能力。
4、情感与态度:充分利用多媒体教学优势,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。
三、教学重点。难点
重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
难点:
(1)对角平分线性质定理中点到角两边的距离的正确理解;
(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)
四、教学过程
教学环节设计
1、提出问题,思考探究
问题1:
生活中有很多数学问题:
小明家居住在某小区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连。
(1)怎样修建管道最短?
(2)新修的两条管道长度有什么关系,画来看一看。
[设计意图]
依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备。
问题2:
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用简易平分角的仪器来画角的平分线。出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线。为什么?
[设计意图]
体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。从上面的探究中可以得到作已知角的平分线的方法。
问题3:
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
[设计意图]
从实验操作中获得启示,明确几何作图的基本思路和方法。
问题4:
作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系。并在此基础上再作出一个45度的角。
[设计意图]
通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的
问题5:
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕。
(1)第一次的折痕和角有什么关系?为什么?
(2)第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
[设计意图]
培养学生的动手操作能力和观察能力,为下面进一步揭示角平分线的性质作好铺垫。
2、教师点拨,归纳概括
按照折纸的顺序画出角及折纸形成的三条折痕。让学生分组讨论。交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质。(角的平分线上的点到角两边的距离相等)结合图形写出已知,求证,分析后写出证明过程。教师归纳,强调定理的条件和作用。
教师用文字语言叙述得到的结论。引导学生结合图形写出已知。求证,分析后写出证明过程,并利用实物投影展示。证明后,教师强调经过证明正确的命题可作为定理。同时强调文字命题的证明步骤。
[设计意图]
经历实践→猜想→证明→归纳的过程,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现其不可替代性,从而把学生的直观体验上升到理性思维。
3、例题解析、应用新知
例1在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,
DF⊥AC,垂足分别是E,F。
求证:EB=FC。
[设计意图]
为突出本节课重点。突破难点而设计的一项活动。让学生运用性质解决数学问题,通过利用多媒体对一些边进行变色,提醒学生直接运用定理,不要仍旧去找全等三角形。同时通过信息技术方便进行一题多解及一题多变研究,更好的拓展学生解题思路及形成知识运用能力。两道变题同时展示,符合高效课堂要求。通过学生观察识图。独立思考。小组讨论,培养学生合作交流的意识。
例2已知:△ABC的角平分线BM。CN相交于点P。
求证:点P到三边AB。BC。CA的距离相等。
[教学方法手段]
限时让学生独立思考分析,然后交流证题思路,再通过多媒体展示一般证明过程。
[设计意图]
通过问题的解决,帮助学生更好的理解角平分线的性质,并达到能熟练运用的程度。
4、课堂练习,巩固提高
课后练习1、2题。
[设计意图]
通过练习,巩固角平分线的性质。
5、课堂小结,回顾反思
(1)。这节课你有哪些收获,还有什么困惑?
(2)。通过本节课你了解了哪些思考问题的方法?
[设计意图]
通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力。
6、布置作业,信息反馈
[设计意图]
通过课后动手练习作业,教师批改作业,检查学生本节课的学习效果,从中发现问题,及时调整教学策略。
必做题:教材第22页第1、2、3题
选做题:教材第23页第6题
五、板书设计:
(略)
八年级上册数学教案反思篇4
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=
2.机动题:(填空)x2-8x+m=(x-4)(),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1),一课一练
八年级上册数学教案反思篇5
(一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)?(a+b)。
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。
八年级上册数学教案反思篇6
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等.
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
6.基本判定:
⑴等腰三角形的判定:
①有两条边相等的.三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.