八年级下册数学教案设计
通过编写教案,教师可以将教学计划、教学重点、难点、教学方法等组织起来,形成完整的教学内容体系。写八年级下册数学教案设计要注意什么?这里给大家提供八年级下册数学教案设计下载,供大家参考。
八年级下册数学教案设计篇1
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数
难点:理解和应用整数指数幂的性质。
一、复习练习:
1、;=;=,=,=。
2、不用计算器计算:÷(—2)2—2-1+
二、指数的范围扩大到了全体整数.
1、探索
现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.
(1);(2)(a•b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。
3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科学记数法
1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.
2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.
3、探索:
10-1=0.1
10-2=
10-3=
10-4=
10-5=
归纳:10-n=
例如,上面例2(2)中的0.000021可以表示成2.1×10-5.
4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.
分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.
所以35纳米=35×10-9米.
而35×10-9=(3.5×10)×10-9
=35×101+(-9)=3.5×10-8,
所以这个纳米粒子的直径为3.5×10-8米.
5、练习
①用科学记数法表示:
(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)000.
②用科学记数法填空:
(1)1秒是1微秒的1000000倍,则1微秒=_________秒;
(2)1毫克=_________千克;
(3)1微米=_________米;(4)1纳米=_________微米;
(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.
八年级下册数学教案设计篇2
●教学目标
(一)教学知识点
1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.
2.能根据相似比进行计算.
(二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练学生的判断能力.
2.能根据相似比求长度和角度,培养学生的运用能力.
(三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
●教学重点相似三角形的定义及运用.
●教学难点根据定义求线段长或角的度数.
●教学过程
Ⅰ.创设问题情境,引入新课
今天,我们就来研究相似三角形.
Ⅱ.新课讲解
1.相似三角形的定义及记法
三角对应相等,三边对应成比例的两个三角形叫做相似三角形。如△ABC与△DEF相似,记作△ABC∽△DEF
其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.
2.想一想
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?
所以D、E、F..
3.议一议,学生讨论
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
结论:两个全等三角形一定相似.
两个等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.
4.例题
例1、有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长都是3.5cm,求该草坪其他两边的实际长度.
例2.已知△ABC∽△ADE,AE=50cm,EC=30cm,BC=70cm,BAC=45,
ACB=40,求(1)AED和ADE的度数。(2)DE的长.
5.想一想
在例2的条件下,图中有哪些线段成比例?
Ⅲ.课堂练习P129
Ⅳ.课时小结
相似三角形的判定方法定义法.
Ⅴ.课后作业
八年级下册数学教案设计篇3
学习目标:
(1)了解运用公式法分解因式的意义;
(2)会用完全平方公式进行因式分解;
(3)清楚优先提取公因式,然后考虑用公式
中考考点:正向、逆向运用公式,特别是配方法是必考点。
预习作业:
1. 完全平方公式字母表示: .
2、形如或的式子称为
3. 结构特征:项数、次数、系数、符号
填空:
(1)(a+b)(a-b) = ;
(2)(a+b)2= ;
(3)(a–b)2= ;
根据上面式子填空:
(1)a2–b2= ;
(2)a2–2ab+b2= ;
(3)a2+2ab+b2= ;
结 论:形如a2+2ab+b2 与a2–2ab+b2的式子称为完全平方式.
a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2
完全平方公式特点:首平方,尾平方,积的2倍在中央,符号看前方。
例1: 把下列各式因式分解:
(1)x2–4x+4 (2)9a2+6ab+b2
(3)m2– (4)
例2、将下列各式因式分解:
(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy
注:优先提取公因式,然后考虑用公式
例3: 分解因式
(1) (2)
(3) (4)
点拨:把 分解因式时:
1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同
2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数P的符号相同
3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P
变式练习:
(1) (2)
(3)
借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,
叫做十字相乘法
口诀:首尾拆,交叉乘,凑中间。
拓展训练:
若把代数式化为的形式,其中m,k为常数,求m+k的值
已知,求x,y的值
当x为何值时,多项式取得最小值,其最小值为多少?
回顾与思考
学习目标:
(1)提高因式分解的基本运算技能
(2)能熟练进行因式分解方法的综合运用.
学习准备:
1、把一个多项式化成 的形式,叫做把这个多项式分解因式。
要弄清楚分解因式的概念,应把握如下特点:
(1)结果一定是 的形式;
(2)每个因式都是 ;
(3)各因式一定要分解到 为止。
2、分解因式与 是互逆关系。
3、分解因式常用的方法有:
(1)提公因式法:
(2)应用公式法:①平方差公式: ②完全平方公式:
(3)分组分解法:am+an+bm+bn=
(4)十字相乘法:=
4、分解因式步骤:
(1)首先考虑提取 ,然后再考虑套公式;
(2)对于二次三项式联想到平方差公式因式分解;
(3)对于二次三项式联想到完全平方公式,若不行再考虑十字相乘法分解因式;
(4)超过三项的多项式考虑分组分解;
(5)分解完毕不要大意,检查是否分解彻底。
辨析题:
1、下列哪些式子的变形是因式分解?
(1)x2–4y2=(x+2y)(x–2y)
(3)4m2–6mn+9n2 =2m(2m–3n)+9n2
(4)m2+6mn+9n2=(m+3n)2
2、把下列各式分解因式:
(1)7x2–63 (2)(x+y)2–14(x+y)+49
(3) (4)(a2+4)2–16a2
(5) (6)
(7) (8)
想一想
计算:
1、32004–32003 2、(–2)101+(–2)100
3、已知 ,求的值.
例1: 把下列各式因式分解(分组后能提公因式)
(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx
(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m
点拨:
1、用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法
2、运算律(如加法交换律、分配律)在因式分解中起着重要的作用
八年级下册数学教案设计篇4
教学目标:
一、知识与技能
1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法
1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观
1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:
①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有
的形式,其中k是常数。
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
师生行为
学生先独立思考,在进行全班交流。
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念。
概念:如果两个变量x,y之间的关系可以表示成
的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。
活动3
做一做:
一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm。那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流。教师提出问题,关注学生思考。此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值。
师生行为:
学生独立思考,然后小组合作交流。教师巡视,查看学生完成的情况,并给予及时引导。在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动。
分析及解答:
1、只有xy=123是反比例函数。
2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值。
解:(1)设,因为x=2时,y=6,所以有
解得k=12
因此
(2)把x=4代入,得
三、巩固提高
活动5
1、已知y是x的反比例函数,并且当x=3时,y=8。
(1)写出y与x之间的函数关系式。
(2)求y=2时x的值。
2、y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表。
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”。
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象。反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象。
八年级下册数学教案设计篇5
教学目标:
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件
教学过程:
一、先复习轴对称图形的定义,以及轴对称的相关的性质:
1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________
2.轴对称的三个重要性质______________________________________________
_____________________________________________________________________
二、提出问题:
二、探索练习:
1.提出问题:
如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?
吸引学生让学生有一种解决难点的想法。
2.分析问题:
分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可
问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`
在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:
1.如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
2.试画出与线段AB关于直线L的线段
3.如图,已知直线MN,画出以MN为对称轴的轴对称图形
小结:本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。
教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高
八年级下册数学教案设计篇6
一、教学目标
(一)知识与技能:
(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
(二)过程与方法:
(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
(三)情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
三、教学过程
教学环节:
活动1:复习引入
看谁算得快:用简便方法计算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2、67×132+25×2、67+7×2、67=;
(3)992–1=。
设计意图:
如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉。引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶。
注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。
活动2:导入课题
P165的探究(略);
2、看谁想得快:993–99能被哪些数整除?你是怎么得出来的?
设计意图:
引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。
活动3:探究新知
看谁算得准:
计算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根据上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。
活动4:归纳、得出新知
比较以下两种运算的联系与区别:
a(a+1)(a-1)=a3-a
a3-a=a(a+1)(a-1)
在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?