教案吧 > 初中教案 > 八年级教案 >

教案八年级数学教案

时间: 新华 八年级教案

教案是教学活动的依据,写好教案是保证教学取得成功、提高教学质量的基本条件。好的教案八年级数学教案是怎样的?这里给大家提供教案八年级数学教案,供大家参考。

教案八年级数学教案篇1

一、教学目标

1、理解分式的基本性质。

2、会用分式的基本性质将分式变形。

二、重点、难点

1、重点:理解分式的基本性质。

2、难点:灵活应用分式的基本性质将分式变形。

3、认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、练习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入

1、请同学们考虑:与相等吗?与相等吗?为什么?

2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3、提问分数的基本性质,让学生类比猜想出分式的基本性质。

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教案八年级数学教案篇2

一、学习目标:1.使学生了解运用公式法分解因式的意义;

2.使学生掌握用平方差公式分解因式

二、重点难点

重 点: 掌握运用平方差公式分解因式.

难 点: 将单项式化为平方形式,再用平方差公式分解因式;

学习方法:归纳、概括、总结

三、合作学习

创设问题情境,引入新课

在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

1.请看乘法公式

(a+b)(a-b)=a2-b2 (1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是

a2-b2=(a+b)(a-b) (2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式讲解

如x2-16

=(x)2-42

=(x+4)(x-4).

9 m 2-4n2

=(3 m )2-(2n)2

=(3 m +2n)(3 m -2n)

四、精讲精练

例1、把下列各式分解因式:

(1)25-16x2; (2)9a2- b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2; (2)2x3-8x.

补充例题:判断下列分解因式是否正确.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)•(a2-1).

五、课堂练习 教科书练习

六、作业 1、教科书习题

2、分解因式:x4-16 x3-4x 4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

教案八年级数学教案篇3

一、复习目标

1、通过复习使学生在回顾基础知识的同时,掌握“双基”,构建自己的知识体系,掌握解决数学问题的方法和能力,从中体会到数学与生活的密切联系。

2、在复习中,让学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

3、通过专题强化训练,让学生体验成功的快乐,激发其学习数学的兴趣。

4、通过模拟训练,培养学生考试的技能技巧。

二、复习重点:

1、第2章:乘法公式与因式分解。

2、第3章:分式。

3、第6章:一元一次不等式。

三、复习方式

1、总体思想:先分单元复习,再综合测试。

2、单元复习方法:学生先做单元导学稿,收集各小组反馈的情况进行重点讲解,布置作业查漏补缺。

3、综合测试:定时检测,教师及时认真阅卷,讲评找出问题及时训练、辅导。

四、复习措施及注意事项

(一)分单元复习阶段的措施:

1、复习教材中的定义、概念、规则,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工,规范解题书写和作图能力的培养。

2、在复习应用题时增加开放性的习题练习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。让学生自主发现问题,解决问题。题目有层次,难度适中,照顾不同层次学生的学习。

3、重视课本中的“数学活动”,挖掘教材的编写意图,防止命题者以数学活动为载体,编写相关“拓展延伸”的探究性题型以及对例、习题的改编题。复习阶段采取的措施:

4、对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。

5、发挥备课组教师的集体力量,在试题的选择上作到面面俱到,重点难点突出,不重不漏。

(二)综合测试阶段的注意点

1、认真分析前两年的统考试卷,基本把握命题思想,掌握重难点,侧重点,基本点。

2、根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力。

3、在每次测试后注重分析讲评,多用激励性语言,不要讽刺、挖苦学生,更不要打击学生的学习积极性。比如“这个题目不是讲过多遍了吗?你怎么还是错了,真是……”。相信每个学生经过自己的努力都能在期末考生中超常的发挥。

教案八年级数学教案篇4

514.3.2.2等边三角形(二)

教学目标

掌握等边三角形的性质和判定方法.

培养分析问题、解决问题的能力.

教学重点

等边三角形的性质和判定方法.

教学难点

等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

III课堂小结

1、等腰三角形和性质

2、等腰三角形的条件

V布置作业

1.教科书第147页练习1、2

2.选做题:

(1)教科书第150页习题14.3第ll题.

(2)已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

(3)《课堂感悟与探究》

5

教案八年级数学教案篇5

11.1与三角形有关的线段

11.1.1三角形的边

1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)

2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)

3.三角形在实际生活中的应用.(难点)

一、情境导入

出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.

教师利用多媒体演示三角形的形成过程,让学生观察.

问:你能不能给三角形下一个完整的定义?

二、合作探究

探究点一:三角形的概念

图中的锐角三角形有()

A.2个

B.3个

C.4个

D.5个

解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.

方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有n(n-1)2条线段,也可以与线段外的一点组成n(n-1)2个三角形.

探究点二:三角形的三边关系

【类型一】判定三条线段能否组成三角形

以下列各组线段为边,能组成三角形的是()

A.2c,3c,5c

B.5c,6c,10c

C.1c,1c,3c

D.3c,4c,9c

解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.

方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.

【类型二】判断三角形边的取值范围

一个三角形的三边长分别为4,7,_,那么_的取值范围是()

A.3<_<11p=""b.4<_<7

C.-3<_3

解析:∵三角形的三边长分别为4,7,_,∴7-4<_<7+4,即3<_<11.故选a.<p="">

方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.

【类型三】等腰三角形的三边关系

已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.

解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.

解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.

方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.

【类型四】三角形三边关系与绝对值的综合

若a,b,c是△ABC的三边长,化简a-b-c+b-c-a+c+a-b.

解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.

解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴a-b-c+b-c-a+c+a-b=b+c-a+c+a-b+c+a-b=3c+a-b.

方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.

三、板书设计

三角形的边

1.三角形的概念:

由不在同一直线上的三条线段首尾顺次相接所组成的图形.

2.三角形的三边关系:

两边之和大于第三边,两边之差小于第三边.

本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既提高了学生学习的兴趣,又增强了学生的动手能力.

教案八年级数学教案篇6

教学目标

1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

教学重点和难点

重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

难点:不等式的解集的概念.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

2.用不等式表示:

(1)x的3倍大于1; (2)y与5的差大于零;

(3)x与3的和小于6; (4)x的小于2.

(3)当x取下列数值时,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)两题用投影仪打在屏幕上)

一、讲授新课

1.引导学生运用对比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向学生提出如下问题:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

不等式一般有无限多个解.

求不等式的解集的过程,叫做解不等式.

3.启发学生如何在数轴上表示不等式的解集

我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

三、应用举例,变式练习

例1 在数轴上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.

解(1),(2),(3)略.

(4)在数轴上表示1≤x≤4,如下图

(5)在数轴上表示-2<x≤3,如下图< p="">

(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

例2 用不等式表示下列数量关系,再用数轴表示出来:

(1)x小于-1; (2)x不小于-1;

(3)a是正数; (4)b是非负数.

解:(1)x小于-1表示为x<-1;(用数轴表示略)

(2)x不小于-1表示为x≥-1;(用数轴表示略)

(3)a是正数表示为a>0;(用数轴表示略)

(4)b是非负数表示为b≥0.(用数轴表示略)

(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)

例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

(2)在数轴上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.

(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

自然数解是什么?(表示选作题)

四、师生共同小结

针对本节课所学内容,请学生回答以下问题:

1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

3.记号“≥”、“≤”各表示什么含义?

4.在数轴上表示不等式解集时应注意什么?

结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

五、作业

1.不等式x+3≤6的解集是什么?

2.在数轴上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">

(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.

3.求不等式x+2<5的正整数解.

课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

教案八年级数学教案篇7

一、复习目标

落实知识点,提高学习效率,在复习中做到突出重点,把知识串成线,结成一张张小网,努力做到面向全体学生,照顾到不同层次的学生的学习需要,努力做到扎实有效,避免做无用功。

1.通过单元专题训练,让学生体验成功的快乐,激发其学习数学的兴趣;

2.通过综合训练使学生进一步探索知识间的关系,明确内在的联系,培养学生分析问题和解决问题能力,以及计算能力。

二、复习方式

1.总体思想:先分单元专题复习,再综合练习;

2.单元专题复习方法:先做单元试卷,然后教师根据试卷反馈讲解,再布置作业查漏补缺;

3.综合练习:教师及时认真批改,讲评时根据学生存在的问题及时辅导,并且给以巩固训练。

三、复习过程和措施

(一)分单元复习阶段的措施:

1.复习教材中的定义、概念,进行正误辨析,教师引导学生回归书本知识,重视对书本基本知识的整理与再加工;

2.重视知识的专题复习,提高学生的分析问题,解决问题的能力;

3.重视应用题复习,题目的出现可以是信息化、图形化方法形式,或联系生活实际为背景出现信息。让学生自主发现问题,解决问题。题目有层次,难度适中,照顾不同学生;

(二)综合测试阶段的注意点

1.认真分析往年的统考试卷,把握命题者的命题思想,重难点,侧重点,基本点;

2.根据历年考试情况,精心汇编一些模拟试卷,教师给学生讲解一些应试技巧,提高应试能力;

3.在每次测试后注重分析讲评,多用激励性语言,不要讽刺、挖苦学生,更不要打击学生的学习积极性。相信每个学生经过自己的努力都能在其中考试中正常的发挥。

总之,在其中复习中,我力求做到精选精练,指导方法,双基训练与能力提高并重。争取让学生取得较好的成绩。

教案八年级数学教案篇8

教学目标

1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题

教学重点:平行四边形的判定方法及应用

教学难点:平行四边形的判定定理与性质定理的灵活应用

一.引

小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

二.探

阅读教材P44至P45

利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

(2)你怎样验证你搭建的四边形一定是平行四边形?

(3)你能说出你的做法及其道理吗?

(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

(5)你还能找出其他方法吗?

从探究中得到:

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

证一证

平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

证明:(画出图形)

平行四边形判定方法2 一组对边平行且相等的四边形是平行四边形。

证明:(画出图形)

三.结

两组对边分别相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

四.用

【例题】

例、已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.

【练习】

1、已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,

需要增加条件 .(只需填上一个你认为正确的即可).

2、如图所示,在ABCD中,E,F分别是对角线BD上的两点,

且BE=DF,要证明四边形AECF是平行四边形,最简单的方法

是根据 来证明.

作业P46练习1、2题

板书设计

平行四边形的性质

定理:平行四边形的性质 例题 练习

教学反思

教案八年级数学教案篇9

《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。

但是,这节课也存在很多不足之处:

1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。

2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。

3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。

4、小组合作时个别学生没有真正动起来。

5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。

6、学生证明位似图形时证明过程还是不够严谨。

7、缺少了位似图形在生活中的应用。

改进措施:

1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。

2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。

3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。

4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。

5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。

6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。

7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。

在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。

教案八年级数学教案篇10

例题讲解

引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

1、你有哪些乘车方案?

2、只租8辆车,能否一次把客人都运送走?

问题2;怎样租车

某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

甲种客车乙种客车

载客量(单位:人/辆)4530

租金(单位:元/辆)400280

(1)共需租多少辆汽车?

(2)给出最节省费用的租车方案。

分析;

(1)要保证240名师生有车坐

(2)要使每辆汽车上至少要有1名教师

根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

y=400x+280(6-x)

化简为:y=120x+1680

讨论:

根据问题中的条件,自变量x的取值应有几种可能?

为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的&39;取值为____。

在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

方案一:

4两甲种客车,2两乙种客车

y1=120×4+1680=2160

方案二:

5两甲种客车,1辆乙种客车

教案八年级数学教案篇11

教学目标:

【知识与技能】

1、理解并掌握等腰三角形的性质。

2、会用符号语言表示等腰三角形的性质。

3、能运用等腰三角形性质进行证明和计算。

【过程与方法】

1、通过观察等腰三角形的对称性,发展学生的形象思维。

2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。

3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。

【情感态度】

引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。

【教学重点】

等腰三角形的性质及应用。

【教学难点】

等腰三角形的证明。

教学过程:

一、情境导入,初步认识

问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。

可按下列方法做出:

作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。

问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?

教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。

在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?

教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。

二、思考探究,获取新知

教师依据学生讨论发言的情况,归纳等腰三角形的性质:

①∠B=∠C→两个底角相等。

②BD=CD→AD为底边BC上的中线。

③∠BAD=∠CAD→AD为顶角∠BAC的平分线。

∠ADB=∠ADC=90°→AD为底边BC上的高。

指导学生用语言叙述上述性质。

性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。

性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。

教师指导对等腰三角形性质的.证明。

1、证明等腰三角形底角的性质。

教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:

(1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。

2、证明等腰三角形“三线合一”的性质。

【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。

三、典例精析,掌握新知

例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

解:∵AB=AC,BD=BC=AD,

∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。

设∠A=x,则∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x。

于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°

于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。

四、运用新知,深化理解

第1组练习:

1、如图,在下列等腰三角形中,分别求出它们的底角的度数。

如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。

2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。

第2组练习:

1、如果△ABC是轴对称图形,则它一定是()

A、等边三角形

B、直角三角形

C、等腰三角形

D、等腰直角三角形

2、等腰三角形的一个外角是100°,它的顶角的度数是()

A、80°B、20°

C、80°和20°D、80°或50°

3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。

4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。

【教学说明】

等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。

【答案】

第1组练习答案:

1、(1)72°;(2)30°

2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

3、∠B=77°,∠C=38.5°

第2组练习答案:

1、C

2、C

3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。

4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。

四、师生互动,课堂小结

这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。

学生间可交流体会与收获。

教案八年级数学教案篇12

教学目标

1.知识与技能

会应用平方差公式进行因式分解,发展学生推理能力.

2.过程与方法

经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

3.情感、态度与价值观

培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

重、难点与关键

1.重点:利用平方差公式分解因式.

2.难点:领会因式分解的解题步骤和分解因式的彻底性.

3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

教学方法

采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

教学过程

一、观察探讨,体验新知

【问题牵引】

请同学们计算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【学生活动】从逆向思维入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

二、范例学习,应用所学

【例1】把下列各式分解因式:(投影显示或板书)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

【学生活动】分四人小组,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

教案八年级数学教案篇13

教学目标

1、理解并掌握等腰三角形的判定定理及推论

2、能利用其性质与判定证明线段或角的相等关系·

教学重点:等腰三角形的判定定理及推论的运用

教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系·

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片·某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度·

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”·

II引入新课

1·由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2·引导学生根据图形,写出已知、求证·

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)·

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”·

4·引导学生说出引例中地质专家的测量方法的根据·

III例题与练习

1·如图2

其中△ABC是等腰三角形的是[]

2·①如图3,已知△ABC中,AB=AC·∠A=36°,则∠C______(根据什么?)·

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)·

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______·

④若已知AD=4cm,则BC______cm·

3·以问题形式引出推论l______·

4·以问题形式引出推论2______·

例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形·

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明·

练习:5·(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E·问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1·判定一个三角形是等腰三角形有几种方法?

2·判定一个三角形是等边三角形有几种方法?

3·等腰三角形的性质定理与判定定理有何关系?

4·现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12·3第5、6题

教案八年级数学教案篇14

一、教材分析教材的地位和作用:

本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的.三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

二、学情分析

八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

三、教学目标及重点、难点的确定

根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

(一)教学目标:

1、知识技能

(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

(2)理解并掌握轴对称的概念,对称轴;了解对称点.

(3)了解轴对称图形和轴对称的联系与区别.

2、过程与方法目标

经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

3、情感、态度与价值观

通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

(二)教学重点:轴对称图形和轴对称的有关概念.

(三)教学难点:轴对称图形与轴对称的联系、区别

.四、教法和学法设计

本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

五、说程序设计:

新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

(一)、观图激趣、设疑导入。

出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

[设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

(二)、实践探索、感悟特征.

《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

为了进一步认识轴对称图形的特点又出示了一组练习

(练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

[设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

(练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

(三)、动手操作、再度探索新知。

将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

(四)、巩固练习、升华新知。

出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

(课件演示)轴对称图形及两个图形成轴对称区别与联系

(五)、综合练习、发展思维。

1、抢答;观察周围哪些事物的形状是轴对称图形。

2、判断:

生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

(1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

0123456789ABCDEFGH

3、像这样写法的汉字哪些是轴对称图形?

口工用中由日直水清甲

(这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

(六)归纳小结、布置作业

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

六、设计说明

这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

教案八年级数学教案篇15

一、复习计划:

(一)整理本学期学过的知识与方法:

1.每一章节复习中教师提前让学生把概念、性质进行归纳。然后加入适当的练习。课堂上逐一对易错题的讲解,多强调解题方法的针对性。最后针对平时练习中存在的问题,查漏补缺。

2.要以与课本同步的训练题型为主,要列表或作图的,让学生积极动手操作,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。

3.几何部分的重点是平行四边形和特殊平行四边形的性质及其判定定理。所以记住性质是关键,学会判定是重点。要学会判定方法的选择,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。对常见的证明题要多练多总结。

(二)在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。

(三)通过本学期的数学学习,让同学总结自己有哪些收获?有哪些需要改进的地方。

二、复习方法:

1、强化训练

这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。

2、加强管理严格要求

根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。

3、加强证明题的训练

通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。

4、加强小组合作

在复习过程中,要充分发挥学生的学习积极性,在老师的指导下,进行归纳、总结,利用小组一起讨论、研究,不放过每一个疑点,不遗漏每一个重点,不忽视每一个考点。

教案八年级数学教案(15篇范例)

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
25115