教案吧 > 初中教案 > 八年级教案 >

创新教案八年级数学下册

时间: 新华 八年级教案

教案编写的内容包括导入新课、讲授新课、巩固练习、板书设计、教具准备等几个方面。好的创新教案八年级数学下册要怎么写?小编给大家带来创新教案八年级数学下册,供大家参考。

创新教案八年级数学下册篇1

第三十四学时:14.2.1平方差公式

一、学习目标:

1.经历探索平方差公式的过程。

2.会推导平方差公式,并能运用公式进行简单的运算。

二、重点难点

重点:平方差公式的推导和应用;

难点:理解平方差公式的结构特征,灵活应用平方差公式。

三、合作学习

你能用简便方法计算下列各题吗?

(1)20_×1999(2)998×1002

导入新课:计算下列多项式的积.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

结论:两个数的和与这两个数的差的积,等于这两个数的平方差。

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:计算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

随堂练习

计算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小结

(a+b)(a—b)=a2—b2

创新教案八年级数学下册篇2

学习目标(学习重点):

1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2、运用菱形的识别方法进行有关推理.

补充例题:

例1、如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

例2、如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

四边形AFCE是菱形吗?说明理由.

例3、如图,ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点

(1)试说明四边形AECG是平行四边形;

(2)若AB=4cm,BC=3cm,求线段EF的长;

(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

课后续助:

一、填空题

1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

且DE∥BA,DF∥CA

(1)要使四边形AFDE是菱形,则要增加条件______________________

(2)要使四边形AFDE是矩形,则要增加条件______________________

二、解答题

1、如图,在□ABCD中,若2,判断□ABCD是矩形还是菱形?并说明理由。

2、如图,平行四边形ABCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

(1)AC,BD互相垂直吗?为什么?

(2)四边形ABCD是菱形吗?

3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问:四边形ABFE是菱形吗?请说明理由。

4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

⑴求证:ABF≌

⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

创新教案八年级数学下册篇3

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0=1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012=1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此发现其中的规律,从而有0.0000000012=1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

创新教案八年级数学下册篇4

一、学习目标

1、多项式除以单项式的运算法则及其应用。

2、多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1、计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2、提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1、多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2、本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

创新教案八年级数学下册篇5

一、学习目标:1.添括号法则.

2.利用添括号法则灵活应用完全平方公式

二、重点难点

重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用

难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.

三、合作学习

Ⅰ.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;

如果括号前是负号,去掉括号后,括号里的各项都要变号。

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判断下列运算是否正确.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。

五、精讲精练

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

随堂练习:教科书练习

五、小结:去括号法则

六、作业:教科书习题

第三十七学时:14.3.1用提公因式法分解因式

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来

难 点: 让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc = m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3) a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72 (2)a2b-5ab

(3)4m3-6m2 (4)a2b-5ab+9b

(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

五、小结:

总结出找公因式的一般步骤.:

首先找各项系数的大公约数,

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

注意:(a-b)2=(b-a)2

六、作业 1、教科书习题

2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

创新教案八年级数学下册篇6

知识技能

1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2、探究线段垂直平分线的性质。

过程方法

1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

教学重点

1、轴对称的性质。

2、线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

创新教案八年级数学下册篇7

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

创新教案八年级数学下册篇8

一、教学目标

(一)教学知识点

1.掌握三角形相似的判定方法2、3.

2.会用相似三角形的判定方法2、3来判断、证明及计算.

(二)能力训练要求

1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

(三)情感与价值观要求

1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

二、教学重难点

教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点:判定方法的推导及运用

三、教学过程设计

(一)创设情境,引入新课

投影片

[生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.

[师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

(二)新课讲授

[师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

[生]三边对应成比例的两个三角形相似.

[师]下面我们就来验证一下.

1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

投影片

个组取一个相同的k值,不同的组取不同的k值,好吗?

[生]好.

[师]经过大家的亲身参与体会,你们得出的结论是什么呢?

[生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

△ABC∽△A′B′C′,理由是:

∠A=∠A′,∠B=∠B′,∠C=∠C′

根据相似三角形的定义可知:△ABC∽△A′B′C′.

[师]其他组的同学的结论相同吗?

[生]相同.

[师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

2.相似三角形的判定方法3.

[师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

[生]两边对应成比例且夹角相等的两个三角形相似.

[师]好,下面我们还是由大家自己推导吧.请看投影片

[师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.

[生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

[师]大家同意吗?

[生]同意.

[师]好,我们又探索出一个相似三角形的.判定方法,即两边对应成比例且夹角相等的两个三角形相似.

3.想一想

107

[师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

[生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

4.做一做

[师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

[生]一共有四种方法.

第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

第二种:即判定方法1

两角对应相等的两个三角形相似.

第三种:即判定方法2

三边对应成比例的两个三角形相似.

第四种:即判定方法3

两边对应成比例且夹角相等的两个三角形相似.

[师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

5.议一议

如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

[生]解:△ABC∽△A′B′C′.

判断方法有.

1.三边对应成比例的两个三角形相似.

2.两角对应相等的两个三角形相似.

3.两边对应成比例且夹角相等.

4.定义法.

(三)巩固应用,拓展研究

下面每组的两个三角形是否相似?为什么?

生]解:(1)△ABC∽△DEF

∴△ABC∽△DEF

(2)在△ABC中

AB=2,AC=6

∵∠A=∠A

∴△ABC∽△AEF

(四)练习巩固,促进迁移

依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

(1)∠A=120°,AB=7cm,AC=14cm,

∠A′=120°,A′B′=3cm,A′C′=6cm,

(2)AB=4cm,BC=6cm,AC=8cm,

A′B′=12cm,B′C′=18cm,A′C′=24cm.解:

又∵∠A=∠A′

∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

(五)回顾联系,形成结构

本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

创新教案八年级数学下册篇9

一.教学目标:

1.探索等腰三角形判定定理.

2.理解等腰三角形的判定定理,并会运用其进行简单的证明.

3.了解反证法的基本证明思路,并能简单应用。

4.培养学生的逆向思维能力。

二. 教学过程分析

第一环节:复习引入

活动过程:通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。

问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?

问题2.我们是如何证明上述定理的?

问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?

第二环节:逆向思考,定理证明

教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.你是怎样构造的?

第三环节:巩固练习

例2已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.

求证:AB=AC.

证明:

第四环节:适时提问 导出反证法

我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:

小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?

我们来看一位同学的想法:

如图,在△ABC中,已知∠B≠∠C,此时AB与Ac要么相等,要么不相等.

假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC

你能理解他的推理过程吗?

再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但△AB∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.

引导学生思考:上一道面的证法有什么共同的特点呢?引出反证法。

都是先假设命题的结论不成立,然后由此推导出了与已知或公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.

第五环节:拓展延伸

现有等腰三角形纸片,如果能从一个角的顶点出发,将原纸片一次剪开成两块等腰三角形纸片,问此时的等腰三角形的顶角的度数?

第六环节:课堂小结

课外作业

教学反思:

创新教案八年级数学下册篇10

教学目标

1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

教学重点和难点

重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

难点:不等式的解集的概念.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

2.用不等式表示:

(1)x的3倍大于1; (2)y与5的差大于零;

(3)x与3的和小于6; (4)x的小于2.

(3)当x取下列数值时,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)两题用投影仪打在屏幕上)

一、讲授新课

1.引导学生运用对比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向学生提出如下问题:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

不等式一般有无限多个解.

求不等式的解集的过程,叫做解不等式.

3.启发学生如何在数轴上表示不等式的解集

我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

三、应用举例,变式练习

例1 在数轴上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.

解(1),(2),(3)略.

(4)在数轴上表示1≤x≤4,如下图

(5)在数轴上表示-2<x≤3,如下图< p="">

(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

例2 用不等式表示下列数量关系,再用数轴表示出来:

(1)x小于-1; (2)x不小于-1;

(3)a是正数; (4)b是非负数.

解:(1)x小于-1表示为x<-1;(用数轴表示略)

(2)x不小于-1表示为x≥-1;(用数轴表示略)

(3)a是正数表示为a>0;(用数轴表示略)

(4)b是非负数表示为b≥0.(用数轴表示略)

(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)

例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

(2)在数轴上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.

(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

自然数解是什么?(表示选作题)

四、师生共同小结

针对本节课所学内容,请学生回答以下问题:

1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

3.记号“≥”、“≤”各表示什么含义?

4.在数轴上表示不等式解集时应注意什么?

结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

五、作业

1.不等式x+3≤6的解集是什么?

2.在数轴上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">

(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.

3.求不等式x+2<5的正整数解.

课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

创新教案八年级数学下册篇11

教学目标

1.知识与技能

了解因式分解的意义,以及它与整式乘法的关系.

2.过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

3.情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

重、难点与关键

1.重点:了解因式分解的意义,感受其作用.

2.难点:整式乘法与因式分解之间的关系.

3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

教学方法

采用“激趣导学”的教学方法.

教学过程

一、创设情境,激趣导入

【问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法.

问题2:当a=102,b=98时,求a2-b2的值.

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1.ma+mb+mc=()();

2.x2-4=()();

3.x2-2xy+y2=()2.

【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

三、小组活动,共同探究

【问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括号里,填上适当的项,使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、随堂练习,巩固深化

课本练习.

【探研时空】计算:993-99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1.什么叫因式分解?

2.因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业.

板书设计

创新教案八年级数学下册篇12

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤。

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法。

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型。

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气,树立自信心,并鼓励学生合作交流,培养学生的团队精神.

教学重点

1.初步体会列方程组解决实际问题的步骤。

2.学会用图表分析较复杂的数量关系问题。

教学难点

将实际问题转化成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是,十位数字是,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。

(2)一个两位数,个位上的数为,十位上的数为,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为。

(3)有两个两位数 和,如果将放在的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将放在的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1。这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数。

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤。

第六环节:布置作业

内容:习题7.6

A组(优等生)2,3,4

B组(中等生)2、3

C组(后三分之一生)2

创新教案八年级数学下册篇13

一、分解因式

※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

※2.因式分解与整式乘法是互逆关系。

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

二、提公共因式法

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法。

※2.概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,ab+ac=a(b+c)

※3.易错点点评:

(1)注意项的.符号与幂指数是否搞错;

(2)公因式是否提彻底;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。

三、运用公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法。

※2.主要公式:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍。

※5.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)因式分解的最后结果必须是几个整式的乘积;

(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

创新教案八年级数学下册篇14

一、学习目标:1·多项式除以单项式的运算法则及其应用·

2·多项式除以单项式的运算算理·

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1·计算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy·

2·提问:①说说你是怎样计算的②还有什么发现吗?

(三)总结法则

1·多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2·本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行·

E、多项式除以单项式法则

第三十四学时:14·2·1平方差公式

一、学习目标:1·经历探索平方差公式的过程·

2·会推导平方差公式,并能运用公式进行简单的运算·

二、重点难点

重点:平方差公式的推导和应用

难点:理解平方差公式的结构特征,灵活应用平方差公式·

三、合作学习

你能用简便方法计算下列各题吗?

(1)20__×1999(2)998×1002

导入新课:计算下列多项式的积·

(1)(x+1)(x—1)(2)(m+2)(m—2)

(3)(2x+1)(2x—1)(4)(x+5y)(x—5y)

结论:两个数的和与这两个数的差的积,等于这两个数的平方差·

即:(a+b)(a—b)=a2—b2

四、精讲精练

例1:运用平方差公式计算:

(1)(3x+2)(3x—2)(2)(b+2a)(2a—b)(3)(—x+2y)(—x—2y)

例2:计算:

(1)102×98(2)(y+2)(y—2)—(y—1)(y+5)

随堂练习

计算:

(1)(a+b)(—b+a)(2)(—a—b)(a—b)(3)(3a+2b)(3a—2b)

(4)(a5—b2)(a5+b2)(5)(a+2b+2c)(a+2b—2c)(6)(a—b)(a+b)(a2+b2)

五、小结:(a+b)(a—b)=a2—b2

创新教案八年级数学下册篇15

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

26028