八年级数学下册教案课件
教案可以帮助教师合理规划教学时间,安排教学环节和教学资源,使教学过程有序、连贯。那要怎么写八年级数学下册教案课件呢?这里提供一些八年级数学下册教案课件,希望对大家能有所帮助。
八年级数学下册教案课件篇1
教学目标
1、知识与技能目标
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)
情景:
如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?
第二环节:合作探究(15分钟,学生分组合作探究)
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
学生汇总了四种方案:
(1)(2)(3)(4)
学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短。
学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短。
如图:
(1)中A→B的路线长为:AA’+d;
(2)中A→B的路线长为:AA’+A’B>AB;
(3)中A→B的路线长为:AO+OB>AB;
(4)中A→B的路线长为:AB。
得出结论:利用展开图中两点之间,线段最短解决问题。在这个环节中,可让学生沿母线剪开圆柱体,具体观察。接下来后提问:怎样计算AB?
在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则。
第三环节:做一做(7分钟,学生合作探究)
教材23页
李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?
(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?
第四环节:巩固练习(10分钟,学生独立完成)
1、甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走。上午10:00,甲、乙两人相距多远?
2、如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离。
3、有一个高为1、5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?
第五环节课堂小结(3分钟,师生问答)
内容:
1、如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)
内容:
作业:1。课本习题1.5第1,2,3题。
要求:A组(学优生):1、2、3
B组(中等生):1、2
C组(后三分之一生):1
板书设计:
教学反思:
八年级数学下册教案课件篇2
教学内容
本节课主要介绍全等三角形的概念和性质.
教学目标
1、知识与技能
领会全等三角形对应边和对应角相等的有关概念.
2、过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.
3、情感、态度与价值观
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1、重点:会确定全等三角形的对应元素.
2、难点:掌握找对应边、对应角的方法.
3、关键:找对应边、对应角有下面两种方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)对应边所对的角是对应角,两条对应边所夹的角是对应角。
教具准备:
四张大小一样的纸片、直尺、剪刀。
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程
一、动手操作,导入课题
1、先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?
2、重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?
【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.
【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.
【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
【交流讨论】通过同桌交流,实验得出下面结论:
1、任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.
2、这时它们的三个顶点、三条边和三个内角分别重合了.
3、完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.
八年级数学下册教案课件篇3
(一)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于
一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
①列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(二)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(三)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的&39;公分母.
通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(四)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
八年级数学下册教案课件篇4
【教学目标】
1.了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学重难点】
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学过程】
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.
二、例题讲解
例1:当x为何值时,分式有意义.
【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
(补充)例2:当m为何值时,分式的值为0?
(1);(2);(3).
【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获.
五、布置作业
课本128~129页练习.
八年级数学下册教案课件篇5
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
第三十七学时:14.3.1用提公因式法分解因式
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年级数学下册教案课件篇6
●教学目标
(一)教学知识点
1.了解两个条件确定一个一次函数;一个条件确定一个正比例函数.
2.能由两个条件求出一次函数的表达式,一个条件求出正比例函数的表达式,并解决有关现实问题.
(二)能力训练要求
能根据函数的图象确定一次函数的表达式,培养学生的数形结合能力.
(三)情感与价值观要求
能把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数字与人类生活的密切联系及对人类历史发展的作用.
●教学重点
根据所给信息确定一次函数的表达式.
●教学难点
用一次函数的知识解决有关现实问题.
●教学方法
启发引导法.
●教具准备
小黑板、三角板
●教学过程
Ⅰ.导入 新课
[师]在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质.如果给你有关信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.
Ⅱ.讲授新课
一、试一试(阅读课文P167页)想想下面的问题。
某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系。
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析
式求出待定系数即可.
[师]请大家先思考解题的思路,然后和同伴进行交流.
[生]因为函数图象过原点,且是一条直线,所以这是一个正比例函数的图象,设表达式为v=kt,由图象可知(2,5)在直线上,所以把t=2,v=5代入上式求出k,就可知v与t的关系式了.
解:由题意可知v是t的正比例函数.
设v=kt
∵(2,5)在函数图象上
∴2k=5
∴k=
∴v与t的关系式为
v= t
(2)求下滑3秒时物体的速度,就是求当t等于3时的v的值.
解:当t=3时
v= ×3= =7.5(米/秒)
二、想一想
[师]请大家从这个题的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式.大家互相讨论之后再表述出来.
[生]第一步应根据函数的图象,确定这个函数是正比例函数或是一次函数;
第二步设函数的表达式;
第三步根据表达式列等式,若是正比例函数,则找一个点的坐标即可;若是一次函数,则需要找两个点的坐标,把这些点的坐标分别代入所设的解析式中,组成关于k,b的一个或两个方程.
第四步解出k,b值.
第五步把k,b的值代回到表达式中即可.
[师]由此可知,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?
[生]确定正比例函数的表达式需要一个条件,确定一次函数的表达式需要两个条件.
三、阅读课文P167页例一,尝试分析解答下面例题。
[例]在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的
一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度.
[师]请大家先分析一下,这个例题和我们上面讨论的问题有何区别.
[生]没有画图象.
[师]在没有图象的情况下,怎样确定是正比例函数还是一次函数呢?
[生]因为题中已告诉是一次函数.
[师]对.这位同学非常仔细,大家应该向这位同学学习,对所给题目首先要认真审题,然后再有目标地去解决,下面请大家仿照上面的解题步骤来完成本题.
[生]解:设y=kx+b,根据题意,得
15=k+b, ①
16=3k+b. ②
由①得b=15-k
由②得b=16-3k
∴15-k=16-3k
即k=0.5
把k=0.5代入①,得k=14.5
所以在弹性限度内.
y=0.5x+14.5
当x=4时
y=0.5×4+14.5=16.5(厘米)
即物体的质量为4千克时,弹簧长度为16.5厘米.
[师]大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求函数表达式的步骤.
[生]它们的相同步骤是第二步到第四步.
求函数表达式的步骤有:
1.设函数表达式.
2.根据已知条件列出有关方程.
3.解方程.
4.把求出的k,b值代回到表达式中即可.
四.课堂练习
(一)随堂练习P168页
(题目见教材)
解:若一次函数y=2x+b的图象经过点A(-1,1),则b=3,该图象经过点B(1,-5)和点 C (- ,0)
(题目见教材)
解:分析直线l是一次函数y=kx+b的图象.由图象过(0,2),(3,0)两点可知:当x=0时,y=2;当x=3时,y=0。分别代入y=kx+b中列出两个方程,解法如上面例题。
五.课时小结
本节课我们主要学习了根据已知条件,如何求函数的表达式.
其步骤如下:
1.设函数表达式;
2.根据已知条件列出有关k,b的方程;
3.解方程,求k,b;
4.把k,b代回表达式中,写出表达式.
六、布置作业 :P169页1、2
八年级数学下册教案课件篇7
教学目标
1·等腰三角形的概念·2·等腰三角形的性质·3·等腰三角形的概念及性质的应用。
教学重点:1·等腰三角形的概念及性质·2·等腰三角形性质的应用。
教学难点:等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ·提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的.图案·这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形·来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是·
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形·
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形·
Ⅱ·导入新课:要求学生通过自己的思考来做一个等腰三角形·
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形·
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形·相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角·同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角·
思考:
1·等腰三角形是轴对称图形吗?请找出它的对称轴·
2·等腰三角形的两底角有什么关系?
3·顶角的平分线所在的直线是等腰三角形的对称轴吗?
4·底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形·它的对称轴是顶角的平分线所在的直线·因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线·
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系·
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高·
由此可以得到等腰三角形的性质:
1·等腰三角形的两个底角相等(简写成“等边对等角”)·
2·等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)·
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质·同学们现在就动手来写出这些证明过程)·
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS)·
所以∠B=∠C·
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD·
所以BD=CD,∠BDA=∠CDA=∠BDC=90°·
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数·
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A·
再由三角形内角和为180°,就可求出△ABC的三个内角·
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷·
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC·
∠A=∠ABD(等边对等角)·
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x·
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°·在△ABC中,∠A=35°,∠ABC=∠C=72°·
[师]下面我们通过练习来巩固这节课所学的知识·
Ⅲ·随堂练习:1·课本P51练习1、2、3·2·阅读课本P49~P51,然后小结·
Ⅳ·课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用·等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高·
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们·
Ⅴ·作业:课本P56习题12·3第1、2、3、4题·
板书设计
12·3·1·1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1·等边对等角2·三线合一