初二数学教案大全
好的教案可以突出学生的主体地位,培养学生的思维能力和创造力,提高学生的综合素质。想知道如何写出优秀的初二数学教案大全吗?这里为大家分享初二数学教案大全,快来学习吧!
初二数学教案大全篇1
教学目标:
1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:
体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:
对于平均数、中位数、众数在不同情境中的应用。
教学方法:
归纳教学法。
教学过程:
一、知识回顾与思考
1、平均数、中位数、众数的概念及举例。
一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的.算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:
(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
二、例题讲解:
某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
三、课堂练习:
复习题A组
四、小结:
1、掌握平均数、中位数与众数的概念及计算。
2、理解算术平均数与加权平均数的联系与区别。
五、作业:
复习题B组、C组(选做)
初二数学教案大全篇2
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
初二数学教案大全篇3
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
三维目标
1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.
2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.
3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.
4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.
重点难点
教学重点
(1)分数指数幂和根式概念的理解.
(2)掌握并运用分数指数幂的运算性质.
(3)运用有理指数幂的性质进行化简、求值.
教学难点
(1)分数指数幂及根式概念的理解.
(2)有理指数幂性质的灵活应用.
课时安排
3课时
教学过程
第1课时
作者:路致芳
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.
思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.
推进新课
新知探究
提出问题
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.
(4)用一个式子表达是,若xn=a,则x叫a的n次方根.
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(nthroot),其中n>1且n∈N.
可以看出数的平方根、立方根的概念是n次方根的概念的特例.
提出问题
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零.
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0).
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示.
③负数没有偶次方根;0的任何次方根都是零.
上面的文字语言可用下面的式子表示:
a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.
a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在.
零的n次方根为零,记为n0=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例.
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.
解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等.其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式.
根式的概念:
式子na叫做根式,其中a叫做被开方数,n叫做根指数.
如3-27中,3叫根指数,-27叫被开方数.
思考
nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理.
〔如3(-3)3=3-27=-3,4(-8)4=-8=8〕.
解答:根据n次方根的意义,可得:(na)n=a.
通过探究得到:n为奇数,nan=a.
n为偶数,nan=a=a,-a,a≥0,a<0.
因此我们得到n次方根的运算性质:
①(na)n=a.先开方,再乘方(同次),结果为被开方数.
②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数.
n为偶数,nan=a=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值.
应用示例
思路1
例求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.
变式训练
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解.
思路2
例1下列各式中正确的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.
解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=a,故A项错.
(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错.
(3)a0=1是有条件的,即a≠0,故C项也错.
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确.所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心.
例23+22+3-22=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路.
解析:因为3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式.
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.
另解:利用整体思想,x=3+22+3-22,
两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.
变式训练
若a2-2a+1=a-1,求a的取值范围.
解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=a-1=a-1,
即a-1≥0,
所以a≥1.
初二数学教案大全篇4
一、教学目的
1、掌握菱形概念,知道菱形与平行四边形的关系。
2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、重点、难点
1、教学重点:
菱形的性质1、2。
2、教学难点:
菱形的性质及菱形知识的综合应用。
三、课堂引入
1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。
菱形定义:有一组邻边相等的平行四边形叫做菱形。
【强调】菱形(1)是平行四边形;(2)一组邻边相等。
让学生举一些日常生活中所见到过的菱形的例子。
四、例习题分析
例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E。
求证:∠AFD=∠CBE。
证明:∵四边形ABCD是菱形,
∴CB=CD,CA平分∠BCD。
∴∠BCE=∠DCE。又CE=CE,
∴△BCE≌△COB(SAS)。
∴∠CBE=∠CDE。
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴∠AFD=∠CBE。
例2(教材P108例2)略
五、随堂练习
1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。
2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。
3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积。
4、已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF。求证:∠AEF=∠AFE。
六、课后练习
1、菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高。
2、如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积。
初二数学教案大全篇5
教学目标
1、理解用配方法解一元二次方程的基本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点
重点:会用配方法解一元二次方程.
难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程
(一)复习引入
1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.
2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?
(二)创设情境
现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?
怎样解这类方程:2x2-4x-6=0
(三)探究新知
让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。
(四)讲解例题
1、展示课本P.14例8,按课本方式讲解。
2、引导学生完成课本P.14例9的填空。
3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
(五)应用新知
课本P.15,练习。
(六)课堂小结
1、用配方法解一元二次方程的基本步骤是什么?
2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解
一元二次方程的算法。
(七)思考与拓展
不解方程,只通过配方判定下列方程解的
情况。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分别配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。
点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。
初二数学教案大全篇6
考标要求:
1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;
2会用因式分解法解某些一元二次方程。
重点:用因式分解法解一元二次方程。
难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。
一填空题(每小题5分,共25分)
1解方程(2+x)(x-3)=0,就相当于解方程()
A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:
(1)解方程:,小明的解法是:解:两边同除以x得:x=2;
(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
其中正确的是()
A小明B小亮C都正确D都不正确
3下面方程不适合用因式分解法求解的是()
A2-32=0,B2(2x-3)-=0,,D
4方程2x(x-3)=5(x-3)的根是()
Ax=,Bx=3C=,=3Dx=
5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()
Ax=0Bx=-1C=0,=-1,D=-1=-2
二填空题(每小题5分,共25分)
6方程(1+)-(1-)x=0解是=_____,=__________
7当x=__________时,分式值为零。
8若代数式与代数式4(x-3)的值相等,则x=_________________
9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=_______.
10如果,则关于x的一元二次方程a+bx=0的解是_________
三解答题(每小题10分,共50分)
11解方程
(1)+2x+1=0(2)4-12x+9=0
(3)25=9(4)7x(2x-3)=4(3-2x)
12解方程=(a-2)(3a-4)
13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?
14解方程:-2+1=0
15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。
如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面
初二数学教案大全篇7
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20__年2月下旬和20__年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20__年和20__年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
初二数学教案大全篇8
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0(2)2x2-8x+1=0
老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.
解:略.(2)与(1)有何关联?
二、探索新知
讨论:配方法解一元二次方程的一般步骤:
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.
例1解下列方程:
(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0
分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.
解:略.
三、巩固练习
教材第9页练习2.(3)(4)(5)(6).
四、课堂小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.
五、作业布置
教材第17页
初二数学教案大全篇9
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
初二数学教案大全篇10
求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。
教学目标:1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。
在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。
本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。
初二数学教案大全篇11
教学内容
本节课主要介绍全等三角形的概念和性质.
教学目标
1.知识与技能
领会全等三角形对应边和对应角相等的有关概念.
2.过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.
3.情感、态度与价值观
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1.重点:会确定全等三角形的对应元素.
2.难点:掌握找对应边、对应角的方法.
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的.边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备
四张大小一样的纸片、直尺、剪刀.
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?
2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?
【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.
【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.
【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
【交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.
2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.
初二数学教案大全篇12
【教学目标】
知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
二、范例学习,应用所学
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
例1:运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步练习
二、填空题
5、幂的乘方,底数______,指数______,用字母表示这个性质是______。
6、若32×83=2n,则n=______。
《乘法公式》同步测试题
25、利用正方形的面积公式和梯形的面积公式即可求解;
根据所得的两个式子相等即可得到。
此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。
26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;
等式左边减数的底数与序号相同,由此得出第n个式子;
初二数学教案大全篇13
一、创设情境 导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索 建立模型
(一)认一认 形成表象
师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?
不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)
(二)找一找 感知特征
1、在例题图中找平行四边形
师:老师这有几幅图,你能在这上面找到平行四边形吗?
2、寻找生活中的平行四边形
师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)
(三)做一做 探究特征
1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】
(四)练一练 巩固表象
完成想想做做第1、2题
(五)画一画 认识高、底
1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。
3、平行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作 巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。
2、完成想想做做第6题 (课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?
(3)得出平行四边形的特性
师再捏住平行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获 拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找平行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
初二数学教案大全篇14
教学目标:
1.知识目标:通过折叠探索等腰三角形、等边三角形的性质。
2.能力目标:进行操作、观察、分析、比较、交流等教学活动,让学生在亲身经历类似的创造活动过程中学习数学知识。
3.情感目标:培养学生用事实验证事物的能力,而不是用主观臆断事物的属性。
教学过程:
一、反馈作业
1.师:昨天我们学习了哪些知识?对于等腰三角形和等边三角形,大家回家也做了探究型作业,对他们有了更深的了解。谁来说说你还知道些什么?
2.师:刚才也有同学谈到其实等腰三角形和等边三角形是对称图形。老师说它们可以称为轴对称图形。
二、新课探究
1.师:你能不能把一个等腰
三角形折一折分成2个部分,使这2部分完全重合?
2.师:大家都可以这样做到,那么谁能指一指我们是沿着哪一条线对折才能使图形对折后完全重合的吗?(学生指)
师:我们把这条能使图形对折
后重合的直线称为对称轴。(板书)我们通常用虚线来表示对称轴。(学生用虚线表示)
3.学生探究
师:你能不能用找到等腰三角形对称轴的方法来找一找等边三角形的对称轴?
(学生尝试)学生交流:你是怎样找的?你找到几条?
(图形对折,是否完全重合)
3.小结:等腰三角形有一条对称轴,等边三角形有三条对称轴。而三条边都不相等的三角形却一条对称轴也没有。
三、探究作业
1.在生活中还有哪些是轴对称图形,也有对称轴,我请同学们回家去找一下,用剪刀和纸把它剪出来,看谁剪得最多。
2.想不出的同学可以问问现在5年级的同学,他们会给你们帮助的。
初二数学教案大全篇15
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的.划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。