教案吧 > 初中教案 > 八年级教案 >

教案八年级数学

时间: 新华 八年级教案

写好教案需要教师认真钻研教材、精心设计教学方法、合理安排教学步骤、板书设计合理、写好教学反思等。下面是一些教案八年级数学免费阅读下载,希望对大家写教案八年级数学有用。

教案八年级数学篇1

一、学习目标

1.多项式除以单项式的运算法则及其应用。

2.多项式除以单项式的运算算理。

二、重点难点

重点:多项式除以单项式的运算法则及其应用。

难点:探索多项式与单项式相除的运算法则的过程。

三、合作学习

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m;

(2)(a2+ab)÷a;

(3)(4x2y+2xy2)÷2xy。

2.提问:

①说说你是怎样计算的;

②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:

2.本质:

四、精讲精练

(1)(12a3—6a2+3a)÷3a;

(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);

(3)[(x+y)2—y(2x+y)—8x]÷2x;

(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。

随堂练习:教科书练习。

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;

E、多项式除以单项式法则。

教案八年级数学篇2

一、教学目的

1、认识大面额的人民币,并能进行换算。

2、会用大面额人民币付钱,体会付钱方式的多样化。

3、感受大面额人民币在生活中的作用,初步培养学生勤俭意识。

二、教学准备

教师准备:不同面值大面额人民币,教学软件,学生学习材料。

学生准备:各种面额的人民币学具。

三、教学过程

(一)、复习引入

教师:昨天,我们去人民币王国里做客,在那里我们认识了人民币,人民币是用什么做单位的呢?

学生:人民币的单位是元、角、分。

(教师根据学生的回答贴出元、角、分三个单位)

教师:你能说说人民币之间有什么最重要的互换关系吗?

学生:1元=10角,1角=10分。

(教师板书此关系式)

教师:今天,我又给孩子们带来一些用元作单位的人民币大朋友,他们的名字叫做大面额人民币。他们也想跟孩子们一起玩儿,你们愿意和他们交朋友吗?

(教师出示课题:大面额人民币)

教师:他们就在我们数学书里第73页上等着你们呢!快去找一找他们吧!

[设计意图:教师通过复习,由小面额人民币引出大面额人民币,为学生构建完整的知识结构提供框架,使新旧知识很好的联系起来。同时,也为学生学习大面额人民币之间的关系提供知识迁移的.基点。]

(二)、认识大面额人民币

1、教师:孩子们见过他们吗?在哪儿见过?

学生1:我在超市里见过。

学生2:我在老师收学费的时候见过。

学生3:我在商场里见过。

2、教师:用过他们吗?什么时候用过?

学生1:开学交学费时我用过。

学生2:我和爸爸、妈妈去超市买东西付钱时,妈妈让我去付钱,那时用过。

3、教师:孩子们既然见过、用过这些新朋友,那你们一定也认识他们吧?下面就请你跟同桌的孩子相互介绍介绍新朋友吧!

教师:有谁愿意把新朋友介绍给全班的孩子听一听。

(学生上台用教师准备好的教具展示并板贴)

学生介绍认识人民币的方法;

4、教师:今天我们的新朋友们要去参加人民币王国里举行的一次化装舞会,他们想请你们帮他们检查检查他们化的装好不好,别人还能不能认出他们来。

(教师出示多媒体游戏内容)

游戏:教师出示遮住一部分颜色和图案但留有数字的人民币。

教案八年级数学篇3

1、本节课初步达到了教学目标,突出了重点,层层推进,突破难点,然后放手让学生去猜想同分母分式的加减法法则,尝试着去解决问题,从对同分母分数加减法法则类比出同分母分式的加减法法则,同时引导了学生把一个实际问题数学化;低起点,顺应着学生的认知过程,设置了随堂练习,在用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去计算,去暴露问题,也为后一步的教学提供了较好的对比分析的材料,让他们留下深刻的印象。

2、是以讨论的形式呈现给学生例题1,让学生去感受体验,学生兴趣高涨。每一个层次的练习完成之后让学生去总结一下在解题过程中的收获,在此基础上引导学生发现解题技巧,把学生的认知提升了一个高的层面上,达到了用法则而不拘泥于法则,通过分析题目的显著特点,来灵活运用方法技巧解决问题。同时把时间和空间留给学生,让他们多一些练习,多一些巩固。

3、是体会到一节课的科学设计不仅对一节课的成败取着决定作用,更重要的是对学生数学思想的建立和数学方法的掌握欲为重要,科学的设计,有利于充分的挖掘学生的数学潜能,突破难点,事半而功倍,有利于数学学习的深化。

不足:(1)学生对于同分母的分式的加减运算掌握得比较好,但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

(2)分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,在计算时应先观察分式的特点,达到化繁为简的目的。

教案八年级数学篇4

平方差公式

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式.

学习过程:

一、自主探索

1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二、试一试

例1、利用平方差公式计算

(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)

例2、利用平方差公式计算

(1)(1)(-x-y)(-x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n2

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形.

(1)请表示图中阴影部分的面积.

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗?aab

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797(2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()

A.只能是数B.只能是单项式C.只能是多项式D.以上都可以

4.下列多项式的乘法中,可以用平方差公式计算的是()

A.(a+b)(b+a)B.(-a+b)(a-b)

C.(a+b)(b-a)D.(a2-b)(b2+a)

5.下列计算中,错误的有()

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个B.2个C.3个D.4个[来源:中.考.资.源.网WWW.ZK5U.COM]

6.若x2-y2=30,且x-y=-5,则x+y的值是()

A.5B.6C.-6D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11.利用平方差公式计算:2019.

12.计算:(a+2)(a2+4)(a4+16)(a-2).

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是().

(A)(x+1)(1+x)(B)(1/2b+b)(-b-1/2a)(C)(-a+b)(-a-b)(D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)()=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y)(2)(a-2)(a+2)(a2+4)

4.利用平方差公式计算

①1003997②1415

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1)(a-b+c)(a-b-c)

2)(a+2b-3)(a-2b+3)

3)(2x+y-z+5)(2x-y+z+5)

4)(a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

教案八年级数学篇5

教学目标:

1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:

重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现

教学过程

一、 创设问题的情境,激发学生的学习热情,导入课题

出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:

1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:

3、 图1—2中,A,B,C 之间的面积之间有什么关系?

学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?

二、 做一做

出示投影3(书中P3图1—4)提问:

1、图1—3中,A,B,C 之间有什么关系?

2、图1—4中,A,B,C 之间有什么关系?

3、 从图1—1,1—2,1—3,1|—4中你发现什么?

学生讨论、交流形成共识后,教师总结:

以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、 议一议

1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?

2、 你能发现直角三角形三边长度之间的关系吗?

在同学的交流基础上,老师板书:

直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”

也就是说:如果直角三角形的两直角边为a,b,斜边为c

那么

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)

四、 想一想

这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?

五、 巩固练习

1、 错例辨析:

△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足 =25

即:c=5

辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题

△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足 ,题目中并为交待C 是斜边

综上所述这个题目条件不足,第三边无法求得。

2、 练习P7 §1.1 1

六、 作业

课本P7 §1.1 2、3、4

教案八年级数学篇6

第11章平面直角坐标系

11。1平面上点的坐标

第1课时平面上点的坐标(一)

教学目标

【知识与技能】

1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。

3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】

1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】

通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点

【重点】

认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】

理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程

一、创设情境、导入新知

师:如果让你描述自己在班级中的位置,你会怎么说?

生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知

师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体

的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?

生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?

生:用一个有序的实数对来表示。

师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?

生:可以。

教师在黑板上作图:

我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为

正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。

师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。

学生操作,教师巡视。教师指正学生易犯的错误。

教师边操作边讲解:

如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。

教师多媒体出示:

师:如图,请同学们写出A、B、C、D这四点的坐标。

生甲:A点的坐标是(—5,4)。

生乙:B点的坐标是(—3,—2)。

生丙:C点的坐标是(4,0)。

生丁:D点的坐标是(0,—6)。

师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?

教师边操作边讲解:

在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。

学生动手作图,教师巡视指导。

三、深入探究,层层推进

师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?

生:都一样。

师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?

生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。

师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?

生:能,在第二象限。

四、练习新知

师:现在我给出几个点,你们判断一下它们分别在哪个象限。

教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A点在第三象限。

生乙:B点在第四象限。

生丙:C点不属于任何一个象限,它在y轴上。

生丁:D点不属于任何一个象限,它在x轴上。

师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。

学生作图,教师巡视,并予以指导。

五、课堂小结

师:本节课你学到了哪些新的知识?

生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。

教师补充完善。

教学反思

物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。

第2课时平面上点的坐标(二)

教学目标

【知识与技能】

进一步学习和应用平面直角坐标系,认识坐标系中的图形。

【过程与方法】

通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。

【情感、态度与价值观】

培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。

重点难点

【重点】

理解平面上的点连接成的图形,计算围成的图形的面积。

【难点】

不规则图形面积的求法。

教学过程

一、创设情境,导入新知

师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。

学生作图。

教师边操作边讲解:

二、合作探究,获取新知

师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?

生甲:三角形。

生乙:直角三角形。

师:你能计算出它的面积吗?

生:能。

教师挑一名学生:你是怎样算的呢?

生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。

师:很好!

教师边操作边讲解:

大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么

图形?

学生完成操作后回答:平行四边形。

师:你能计算它的面积吗?

生:能。

教师挑一名学生:你是怎么计算的呢?

生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:

教师多媒体出示下图:

教案八年级数学篇7

一、教学目标

1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.

2.继续渗透和培养学生对类比数学思想的认识和理解.

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

4.通过学习,了解由特殊到一般的唯物辩证法的观点.

二、教学设计

类比学习,探讨发现

三、重点及难点

1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.

2.教学难点 :是了解判定定理1的证题方法与思路.

四、课时安排

1课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1.什么叫相似三角形?什么叫相似比?

2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.

[讲解新课]

我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有

三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们

来研究能不能用较少的几个条件就能判定三角形相似呢?

上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种方法.

我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形

全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:

问:判定两个三角形全等的方法有哪几种?

答:SAS、ASA(AAS)、SSS、HL.

问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到中应如何说?

答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.

问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?

答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.

(2)用类比方法找出的新命题一定要加以证明.

如图5-53,在△ABC和△ 中, , .

问:△ABC和△ 是否相似?

分析:可采用问答式以启发学生了解证明方法.

问:我们现在已经学习了哪几个判定三角形相似的方法?

答:①三角形的定义,②上一节学习的预备定理.

问:根据本命题条件,探讨时应采用哪种方法?为什么?

答:预备定理,因为用定义条件明显不够.

问:采用预备定理,必须构造出怎样的图形?

答: 或 .

问:应如何添加辅助线,才能构造出上一问的图形?

此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.

(1)在△ABC边AB(或延长线)上,截取 ,过D作DE∥BC交AC于E.

“作相似.证全等”.

(2)在△ABC边AB(或延长线上)上,截取 ,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.

(教师向学生解释清楚“或延长线”的情况)

虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.

判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

简单说成:两角对应相等,两三角形相似.

例1 已知 和 中 , , , .

求证: ∽ .

此例题是判定定理的直拉应用,应使学生熟练掌握.

例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.

已知:如图5-54,在 中,CD是斜边上的高.

求证: ∽ ∽ .

该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.

即 ∽△∽△.

[小结]

1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.

2.判定定理1的应用以及记住例2的结论并会应用.

七、布置作业

教案八年级数学篇8

教学目标:

1、知道负整数指数幂=(a≠0,n是正整数)、

2、掌握整数指数幂的运算性质、

3、会用科学计数法表示小于1的数、

教学重点:

掌握整数指数幂的运算性质。

难点:

会用科学计数法表示小于1的数。

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、

教学过程:

一、课堂引入

1、回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2、回忆0指数幂的规定,即当a≠0时,a0=1、

3、你还记得1纳米=10?9米,即1纳米=米吗?

4、计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的、

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012=1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012=1。2×10?2,0。0012=1。2×10?3,0。00012=1。2×10?4,以此发现其中的规律,从而有0。0000000012=1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。

教案八年级数学篇9

《正弦和余弦》

一、素质教育目标

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。

(三)德育渗透点

培养学生独立思考、勇于创新的精神。

二、教学重点、难点

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。

三、教学步骤

(一)明确目标

1.复习提问

(1)什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.

(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).

(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。

2.导入新课

根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题。

(二)整体感知

关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。

(三)重点、难点的学习和目标完成过程

1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。

2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。

3.教师板书:

任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固。

已知∠A和∠B都是锐角,

(1)把cos(90°-A)写成∠A的正弦。

(2)把sin(90°-A)写成∠A的余弦。

这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3。

学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。

教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备。

(四)小结与扩展

1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。

2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。

教案八年级数学篇10

教材分析

1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

学情分析

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

教学目标

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

教案八年级数学篇11

轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,

12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

教案八年级数学篇12

一、内容和内容解析

1.内容

三角形中相关元素的概念、按边分类及三角形的三边关系.

2.内容解析

三角形是一种最基本的几何图形,是认识其他图形的基础,在本章中,学好了三角形的有关概念和性质,为进一步学习多边形的相关内容打好基础,本节主要介绍与三角形的的概念、按边分类和三角形三边关系,使学生对三角形的有关知识有更为深刻的理解.

本节课的教学重点:三角形中的相关概念和三角形三边关系.

本节课的教学难点:三角形的三边关系.

二、目标和目标解析

1.教学目标

(1)了解三角形中的相关概念,学会用符号语言表示三角形中的对应元素.

(2)理解并且灵活应用三角形三边关系.

2.教学目标解析

(1)结合具体图形,识三角形的概念及其基本元素.

(2)会用符号、字母表示三角形中的相关元素,并会按边对三角形进行分类.

(3)理解三角形两边之和大于第三边这一性质,并会运用这一性质来解决问题.

三、教学问题诊断分析

在探索三角形三边关系的过程中,让学生经历观察、探究、推理、交流等活动过程,培养学生的和推理能力和合作学习的精神.

四、教学过程设计

1.创设情境,提出问题

问题回忆生活中的三角形实例,结合你以前对三角形的了解,请你给三角形下一个定义.

师生活动:先让学生分组讨论,然后各小组派代表发言,针对学生下的定义,给出各种图形反例,如下图,指出其不完整性,加深学生对三角形概念的理解.

【设计意图】三角形概念的获得,要让学生经历其描述的过程,借此培养学生的语言表述能力,加深学生对三角形概念的理解.

2.抽象概括,形成概念

动态演示“首尾顺次相接”这个的动画,归纳出三角形的定义.

师生活动:

三角形的定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

【设计意图】让学生体会由抽象到具体的过程,培养学生的语言表述能力.

补充说明:要求学生学会三角形、三角形的顶点、边、角的概念以及几何表达方法.

师生活动:结合具体图形,教师引导学生分析,让学生学会由文字语言向几何语言的过渡.

【设计意图】进一步加深学生对三角形中相关元素的认知,并进一步熟悉几何语言在学习中的应用.

3.概念辨析,应用巩固

如图,不重复,且不遗漏地识别所有三角形,并用符号语言表示出来.

1.以AB为一边的三角形有哪些?

2.以∠D为一个内角的三角形有哪些?

3.以E为一个顶点的三角形有哪些?

4.说出ΔBCD的三个角.

师生活动:引导学生从概念出发进行思考,加深学生对三角形中相关元素概念的理解.

4.拓广延伸,探究分类

我们知道,按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形,如果要按照边的大小关系对三角形进行分类,又应该如何分呢?小组之间同学进行交流并说说你们的想法.

师生活动:通过讨论,学生类比按角的分类方法按边对三角形进行分类,接着引出等腰三角形及等边三角形的概念,引导学生了解等腰三角形与等边三角形的联系,强化学生对三角形按边分类的理解.

教案八年级数学篇13

课题:三角形全等的判定(三)

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的点评。

例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1=

只要证什么?(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

教案八年级数学篇14

教学目标:

1、在现实情境中,通过具体的操作活动,了解直角三角形的判定定理,

2、运用判定定理解决有关问题。

重点:直角三角形的判定定理。

难点:探索直角三角形的判定定理的应用。

教学过程:

一、回顾知识引入新课

1、直角三角形的定义:有一个角是直角的三角形叫直角三角形。

2、三角形内角和性质:三角形内角和等于180°。

3、三角形中线的定义:三角形顶点与对边中点连线段。

二、想一想,探求判定定理。

1、如图在△ABC中,如果∠A+∠B=90°那么△ABC是直角三形吗?

证明:∵∠A+∠B=90°(已知)

∠A+∠B+∠C=180°(△的内角和为180°)

∴∠C=180°-(∠A+∠B)=180°-90°=90°

∴△ABC是直角三角形(直角三角形定义)

直角△的判定定理1:两锐角互余的△是直角三角形。

在三角形中如果两锐角互余那么三角形是直角△

2、如果,三角形一边上的中线等这边的一半,那么这个△是直角△吗?

已知,如图在△ABC中,CD是AB边上的中线且CD=1/2AB求证△ABC是RT△

证明∵CD是△ABC的AB边上中线(已知)

AD=BD=1/2AB(中点的性质)

∵CD=1/2AB(已知)

∴CD=BDCD=AD

∴∠2=∠B∠1=∠A(等边对等角)

∵∠A+∠B+∠ABC=180(三角形内角和性质)

∴∠A+∠B+(∠1+∠2)=180

∴∠A+∠B+∠A+∠B=180

∴2(∠A+∠B)=180

∠A+∠B=90

所以三角形ABC是直角三角形(直角三角形判定定理1)

三、巩固与练习

1、在△ABC,若∠A=35,∠B=55则△ABC是△?

2、在△ABC中,CD是AB边上的中线,CD=1/2AB,那么△ABC的形状是()

A:锐角△B:钝角△C:直角△D:以上都不对

3、在等边△ABC中,延长BC至D,使CD=CB,使AC=1/2BD。求证:△ABD是直角△,

证明:∵CD=CB(已知)

∴点C为BC的中点(中点的定义)

∴AC为△ABC的边BD上的中线(中线的定义)

∵AC=1/2BD(已知)

∴△ABD是直角△(直角△的判定定理2)

四、小结:这节课学习了直角三角形两个判定定理,

1、定理1:两锐角互余的三角形是直角三角形。

2、在三角形中如果一条边上的中线,等于这条边的一半的三角形是直角三角形。

五、作业布置:

课本87页练习题。

教案八年级数学篇15

《反比例函数》知识点整理

1、定义:形如y=(k为常数,k≠0)的函数称为反比例函数。

2、其他形式xy=k(k为常数,k≠0)都是。

3、图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和y=—x。对称中心是:原点。

4、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

5、k的几何意义:表示反比例函数图像上的点向两坐标轴

所作的垂线段与两坐标轴围成的矩形的面积。

勾股定理

1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2、勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。那么这个三角形是直角三角形。

3、经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定

1、两组对边分别相等的四边形是平行四边形

2、对角线互相平分的四边形是平行四边形;

3、两组对角分别相等的四边形是平行四边形;

4、一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;

矩形的对角线平分且相等。AC=BD

矩形判定定理:

1、有一个角是直角的平行四边形叫做矩形。

2、对角线相等的平行四边形是矩形。

3、有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1、一组邻边相等的平行四边形是菱形。

2、对角线互相垂直的平行四边形是菱形。

3、四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:1、邻边相等的矩形是正方形。2、有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是(约为0.618)的矩形叫做黄金矩形。

数据的分析

1、算术平均数:

2、加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4、一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5、一组数据中的数据与最小数据的差叫做这组数据的极差(range)。

6、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

7、平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

教案八年级数学篇16

分式的基本性质

一、教学目标

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

三、例、习题的意图分析

1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.

2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.

3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

四、课堂引入

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解

P7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

P11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

P11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

教案八年级数学篇17

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1.教师通过课件出2个分式混合运算的小练习.

2.总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3.作业:

a)教科书习题16.2第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

教案八年级数学篇18

一、教学目标

1.了解分式、有理式的概念。

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件。

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

3。认知难点与突破方法

难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。

三、例、习题的意图分析

本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。

1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别。

希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。

2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。

4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。

四、课堂引入

1.让学生填写P4[思考],学生自己依次填出:

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程。

设江水的流速为x千米/时。

教案八年级数学篇19

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用

难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式计算:

(1)1022 (2)992

教案八年级数学篇20

《一次函数的图象应用》

教学目标

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

2.过程与方法

经历探索一次函数的应用问题,发展抽象思维.

3.情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

重、难点与关键

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习.

三、课堂总结,发展潜能

由学生自我评价本节课的表现.

四、布置作业,专题突破

课本P120习题14.2第9,10,11题.

板书设计

14.2.2一次函数(4)

1、一次函数的应用例:

26595