教案吧 > 初中教案 > 八年级教案 >

初二数学1000字教案

时间: 新华 八年级教案

教案可以帮助教师明确教学目标和内容,从而更好地组织教学。初二数学1000字教案怎么写才规范?下面给大家分享初二数学1000字教案,希望对大家有所帮助。

初二数学1000字教案篇1

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

初二数学1000字教案篇2

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重点:能观察出多项式的公因式,并根据分配律把公因式提出来

难点:让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

五、小结:

总结出找公因式的一般步骤.:

首先找各项系数的大公约数,

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

注意:(a-b)2=(b-a)2

六、作业1、教科书习题

2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

初二数学1000字教案篇3

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1.知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2.过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3.情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1.重点:会确定全等三角形的对应元素.

2.难点:掌握找对应边、对应角的方法.

3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的.边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

四张大小一样的纸片、直尺、剪刀.

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

初二数学1000字教案篇4

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。

教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1)x2+2x-3(观察二次项系数是否为“l”)

=x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等)

=(x+1)2-4。(使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2引导学生完成P.11~P.12例6的填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

说一说一元二次方程解的情况。

[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

教学后记:

初二数学1000字教案篇5

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

矩形性质定理1:矩形的四个角都是直角.

矩形性质定理2:矩形对角线相等.

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半.

(这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如图.

(2)矩形性质.

1.具有平行四边形的所有性质.

2.特有性质:四个角都是直角,对角线相等.

3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

八、布置作业

教材P158中2、5,P195中7.

九、板书设计

十、随堂练习

教材P146中1、2、3、4

27978