教案吧 > 初中教案 > 八年级教案 >

初二教案数学

时间: 新华 八年级教案

教案可以帮助教师更好地评估学生的学习效果,以便更好地调整教学策略,以达到更好的教学效果。初二教案数学要怎么写?接下来给大家带来初二教案数学,方便大家学习。

初二教案数学篇1

教材分析

1.本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

学情分析

1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

教学目标

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

教学重点和难点

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

初二教案数学篇2

教学目标

1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

3、引导学生体会“降次”化归的思路。

重点难点

重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。

难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。

教学过程

(一)复习引入

1、判断下列说法是否正确

(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();

(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();

(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),

若(x+3)(x-6)=0,则x+3=0或x-6=0();

(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),

若(x+3)(x-6)=1,则x+3=或x-6=2()。

答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;

若x2=2,则x=。

答案:平方根,±,±2,±。

(二)创设情境

前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?

引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。

给出1.1节问题一中的方程:(35-2x)2-900=0。

问:怎样将这个方程“降次”为一元一次方程?

(三)探究新知

让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。

(四)讲解例题

展示课本P.7例1,例2。

按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。

引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。

因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。

直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。

注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;

(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。

(五)应用新知

课本P.8,练习。

(六)课堂小结

1、解一元二次方程的基本思路是什么?

2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?

3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?

(七)思考与拓展

不解方程,你能说出下列方程根的情况吗?

(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根

通过解答这个问题,使学生明确一元二次方程的解有三种情况。

布置作业

初二教案数学篇3

一、学情分析

本学期本人继续担任八年级(2)班的数学教学工作,八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。从上期期末考试的成绩来看1班、2班的成绩差异很大,2班有少数学生不上进,思维不紧跟老师,有部分同学基础较差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

二、教材分析

本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

第十七章分式

本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

第十八章函数及其图像

函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

第十九章全等三角形

本章主要内容是探索三角形全等的判定方法,领略推理证明的奥秘,由于三角形全等的判定方法与全等三角形的性质具有“互逆”的特点,所以本章因势利导,介绍了命题与定理、逆命题与逆命题的有关知识。此外,本章教材最后还介绍了几种常用的基本作图和简单的尺规作图的方法。

第二十章平行四边形的判定

本章的内容包括平行四边形的判定;矩形、菱形、正方形等几种特殊平行四边形的判定;等腰梯形的判定等几个部分。本章首先通过回顾平行四边形的性质,由性质引出判定方法,在此基础上,学习矩形、菱形、正方形等特殊平行四边形的判定,最后介绍了等腰梯形的判定与应用。本章知识是在学习了平行线、三角形、平行四边形的性质等知识的基础上的进一步深化和提高,是今后学习其他几何知识的基础。

第二十一章数据的整理与初步处理

本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

三、提高学科教育质量的主要措施:

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7、指导成立“课外兴趣小组”的民间组织,开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长。

8、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。

9、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

10、培养学生学习数学的良好习惯。这些习惯包括:

①认真做作业的习?包括作业前清理好桌面,作业后认真检查;

②预习的习惯;

③认真看批改后的作业并及时更正的习惯;

④认真做好课前准备的习惯;

⑤在书上作精要笔记的习惯;

⑥妥善保管书籍资料和学习用品的习惯;

⑦认真阅读数学教材的习惯。

初二教案数学篇4

教学目标:

1、通过操作活动,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。

1、通过观察、操作,使学生初步感知所学图形之间的关系。

3、能根据要求自己操作学具。

4、培养学生团结协作的精神。

教学重难点:

平面图形之间的关系。

教具、学具准备:教师:各种平面图形的图片;学生:学具袋中的平面图形。

教学过程:

一、基础训练。

20以内退位减法的练习。(20题,学生独立在练习纸上完成,电脑计时2分钟。)

二、情景引入。

小朋友们,老师今天要领你们去图形王国参观学习,你们想去吗?

三、探究交流,获取新知。

1、引旧入新,初步感知长方形和正方形的特征。

(1)出示图形王国的向导,引出所学过的图形,学生认一认。

(2)先后出示长短不同的5条线段,让学生选其中的4条分别拼成一个长方形并说说选择它们的理由。

在学生说出理由的同时讲解“对边”的含义。

2、动手操作,具体感知长方形和正方形的特征

(1)设难:你如何证明长方形的对边一样长呢?

先让学生自由说说自己的方法,之后再让学生看书第27面例1中的对折方法,引导学生对折证明。

(2)老师小结并板书:长方形的对边相等。

(3)引导学生通过动手折叠证明正方形的四条边一样长。

(4)老师小结并板书:正方形的四条边都相等。

3、动手拼图,感知平面图形之间的关系。

(1)用两个同样的长方形拼一拼,你能拼成什么图形?

学生先动手拼,再分别展示学生的作品。

(2)教师提出要求:用四个大小相同的正方形你可以拼成什么图形呢。

先让学生动手拼,再分别展示学生的图形。

(3)用四个三角形可能拼出什么图形?

把拼法不同的图案展示出来,并加以表扬肯定。

4、课中操:《小手拍拍》

5、平面图形之间的相互转换。

(1)正方形转换成三角形。

(2)长方形转换成正方形。

(3)圆形转换成正方形。

四、应用知识,体验成功。

1、说出图中是用哪些图形拼出来的。

2、出示两个大小不同的长方形,问:它们能否拼成一个正方形呢?为什么?

3、生活中的拼图。

出示几组生活中的图案,让学生感受图形拼组的实用、美观,激发学习兴趣。

五、质疑问难

长方形和正方形有什么不同?

六、小结本课内容。

1、小朋友们,今天我们一起学习了什么内容?

2、谈一谈你的收获。

初二教案数学篇5

一、学习目标:1.多项式除以单项式的运算法则及其应用.

2.多项式除以单项式的运算算理.

二、重点难点:

重点:多项式除以单项式的运算法则及其应用

难点:探索多项式与单项式相除的运算法则的过程

三、合作学习:

(一)回顾单项式除以单项式法则

(二)学生动手,探究新课

1.计算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提问:①说说你是怎样计算的②还有什么发现吗?

(三)总结法则

1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______

2.本质:把多项式除以单项式转化成______________

四、精讲精练

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

随堂练习:教科书练习

五、小结

1、单项式的除法法则

2、应用单项式除法法则应注意:

A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号

B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;

C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;

D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.

E、多项式除以单项式法则

初二教案数学篇6

教学目标

教学目标

1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。

2、理解一元二次方程的定义,能识别一元二次方程。

3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。

重点难点

重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

难点:把实际问题转化为一元二次方程的模型。

教学过程

(一)创设情境

前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。

1、展示课本P.2问题一

引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。

(35-2x)2=900①

2、展示课本P.2问题二

引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?

通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程

2t+×0.01t2=3t②

3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、观察上述方程③和④,启发学生归纳得出:

如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知数且a≠0),

其中a,b,c分别叫作二次项系数、一次项系数、常数项。

2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。

(三)讲解例题

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。

[解]去括号,得3x2+5x-12=x2+4x+4,

化简,得2x2+x-16=0。

二次项系数是2,一次项系数是1,常数项是-16。

点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。

(四)应用新知

课本P.4,练习第3题,

(五)课堂小结

1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。

2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。

3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

(六)思考与拓展

当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

布置作业

课本习题1.1中A组第1,2,3题。

教学后记:

【1.2.1因式分解法、直接开平方法(1)】

教学目标

1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

2、会用因式分解法解某些一元二次方程。

3、进一步让学生体会“降次”化归的思想。

重点难点

重点:,掌握用因式分解法解某些一元二次方程。

难点:用因式分解法将一元二次方程转化为一元一次方程。

教学过程

(一)复习引入1、提问:

(1)解一元二次方程的基本思路是什么?

(2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?

2、用两种方法解方程:9(1-3x)2=25

(二)创设情境

说明:可用因式分解法或直接开平方法解此方程。解得x1=,,x2=-。

1、说一说:因式分解法适用于解什么形式的一元二次方程。

归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。

2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?

(三)探究新知

引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。

把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0

解得tl=0,t2=200。

t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。

(四)讲解例题

1、展示课本P.8例3。

按课本方式引导学生用因式分解法解一元二次方程。

2、让学生讨论P.9“说一说”栏目中的问题。

要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。

3、展示课本P.9例4。

让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。

(五)应用新知

课本P.10,练习。

(六)课堂小结

1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。

2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。

(七)思考与拓展

用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。

(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。

[解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,

(3x-2)(x+3)=0,3x-2=0,或x+3=0,

所以xl=,x2=-3

(2)去括号、整理得x2+2x-3=12,x2+2x-15=0,

(x+5)(x-3)=0,x+5=0或x-3=0,

所以x1=-5,x2=3

先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。

28302