教案吧 > 初中教案 > 八年级教案 >

八年级下册数学教案

时间: 新华 八年级教案

教案可以帮助教师从学生实际情况出发,面向大多数学生,调动学生学习的积极性。要怎么写八年级下册数学教案呢?下面给大家分享一些八年级下册数学教案,供大家参考。

八年级下册数学教案篇1

第二章一元一次不等式与一元一次不等式组

1、不等关系

2、不等式的基本性质

①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变

②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变

③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变

3、不等式的解集

①能使不等式成立的未知数的值,叫做不等式的解

②一个含有不等式所有的解,组成这个不等式的解集

③求不等式解集的过程叫做解不等式

4、一元一次不等式

①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的次数是1

5、一元一次不等式与一次函数

6、一元一次不等式组

①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组

②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组

八年级下册数学教案篇2

教学目标

1.知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.

2.过程与方法

经历探索一次函数的应用问题,发展抽象思维.

3.情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.

重、难点与关键

1.重点:一次函数的应用.

2.难点:一次函数的应用.

3.关键:从数形结合分析思路入手,提升应用思维.

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习.

三、课堂总结,发展潜能

由学生自我评价本节课的表现.

四、布置作业,专题突破

课本P120习题14.2第9,10,11题.

板书设计

14.2.2一次函数(4)

1、一次函数的应用例:

八年级下册数学教案篇3

教学目标:

1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:

①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:

重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:

新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:

1、情境导入

播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2、怎样将图354中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!

(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测

图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

延伸拓展:

1、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

实践探索:

①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

②巩固练习课本74页中的习题3.6。

板书设计:

3.5它们是怎样变过来的。

轴对称、平移、旋转的性质例题;

图形之间的变换关系;

八年级下册数学教案篇4

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值。

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

八年级下册数学教案篇5

教学目标

1.掌握等边三角形的性质和判定方法.   2.培养分析问题、解决问题的能力.

教学重点:等边三角形的性质和判定方法.

教学难点:等边三角形性质的应用

教学过程

I创设情境,提出问题

回顾上节课讲过的等边三角形的有关知识

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

II例题与练习

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

3. P56页练习1、2

III课堂小结:1.等腰三角形和性质;等腰三角形的条件

V布置作业:1.P58页习题12.3第ll题.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

八年级下册数学教案篇6

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1.平移

2.平移的性质:

⑴经过平移,对应点所连的线段平行且相等;

⑵对应线段平行且相等,对应角相等。

⑶平移不改变图形的大小和形状(只改变图形的位置)。

(4)平移后的图形与原图形全等。

3.简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;

⑵需要平移的方向;

⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;

⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1.旋转

2.旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3.简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

八年级下册数学教案篇7

从分数到分式

一、 教学目标

1. 了解分式、有理式的概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件.

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

三、课堂引入

1.让学生填写P4[思考],学生自己依次填出:_____

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3. 以上的式子_____有什么共同点?它们与分数有什么相同点和不同点?

五、例题讲解

P5例1. 当x为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母x的取值范围.

[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

(补充)例2. 当m为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

七、课后练习

1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

(3)x与y的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b,,; 整式:8x,a+b, ;

分式:,

2. X = 3. x=-1

课后反思:

八年级下册数学教案篇8

图形的平移

知识与技能目标:

1.平移的定义;2.平移的基本性质

过程与方法目标:

1.通过具体实例认识平移,理解平移的基本内涵.

2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.

情感态度与价值观目标:

经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

教学重点:平移的基本性质.

教学难点:平移的基本内涵的理解.

教学方法:探索、发现法.

教具准备

图片:一些游乐园的图片、辘轳、电梯等.

电脑演示:平移的过程,粒子运动及行星运转等.

教学过程

Ⅰ.巧设情景问题,引入课题

同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?

Ⅱ.讲授新课

下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)

(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?

好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)

如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?

八年级下册数学教案篇9

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题。

2.使学生理解公式与代数式的关系。

(二)能力训练点

1.利用数学公式解决实际问题的能力。

2.利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式。

2.难点:同重点。

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

一课时。

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

八年级下册数学教案篇10

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级下册数学教案篇11

教学目标

1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.

教学重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.

教学难点:等腰三角形三线合一的性质的理解及其应用.

教学过程

Ⅰ.提出问题,创设情境

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

有的三角形是轴对称图形,有的三角形不是.

问题:那什么样的三角形是轴对称图形?

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.

思考:

1.等腰三角形是轴对称图形吗?请找出它的对称轴.

2.等腰三角形的两底角有什么关系?

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.

由此可以得到等腰三角形的性质:

1.等腰三角形的两个底角相等(简写成“等边对等角”).

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,

求:△ABC各角的度数.

分析:根据等边对等角的性质,我们可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形内角和为180°,就可求出△ABC的三个内角.

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

解:因为AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等边对等角).

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,

从而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.   在△ABC中,∠A=35°,∠ABC=∠C=72°.

[师]下面我们通过练习来巩固这节课所学的知识.

Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.

Ⅳ.课时小结

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.

Ⅴ.作业:课本P56习题12.3第1、2、3、4题.

板书设计

12.3.1.1 等腰三角形

一、设计方案作出一个等腰三角形

二、等腰三角形性质:1.等边对等角     2.三线合一

12.3.1.1  

八年级下册数学教案篇12

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

八年级下册数学教案篇13

不等关系

一、教学目标

1、知识与技能目标

①理解不等式的意义.

②能根据条件列出不等式.

2、过程与方法目标

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

3、情感与态度目标

通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的信心和兴趣。

二、教学重点

通过探寻实际问题中的不等式关系,认识不等式。

三、教学难点

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

四、教学过程

第一环节:创设问题情景,引入新课

活动内容:寻找相等的量和不等的量

师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

生:

师:还有其他例子吗?

(同学们各抒己见)

师:我这里也有一些例子。拿出给同学们参考一下。

八年级下册数学教案篇14

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1.知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2.过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3.情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1.重点:会确定全等三角形的对应元素.

2.难点:掌握找对应边、对应角的方法.

3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

四张大小一样的纸片、直尺、剪刀.

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

八年级下册数学教案篇15

一、学生起点分析

通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】:已知,请问:①可能是整数吗?②可能是分数吗?

【释一释】:释1.满足的为什么不是整数?

释2.满足的为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段:

1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形(右1)

2.三边长都是有理数

2.只有两边长是有理数

3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足的

解:(右2)

仿:在数轴上表示满足的

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容:

1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

28946