八年级数学教案全集
教案中的教学目标应该清晰明确,具体可行,并与学生的实际情况相结合。八年级数学教案全集规范是怎样的?下面给大家整理了一些八年级数学教案全集,供大家参考。
八年级数学教案全集篇1
一、复习目标:
(一)整理本学期学过数学知识与方法。
1、知识要点复习。力求融会贯通,形成体系。进行适当的练习。课堂上对易错题进行逐一详细讲解。多强调有针对性的解题方法。根据平时作业和测试情况,找出存在的问题,查漏补缺。
2、考试热点归纳。要以与课本同步的训练题型为主。让学生积极动手操作,得出结论。对新题型,复习时,要详细讲解方法和步骤。课堂上,做到精讲精练,引导学生自己总结,自己归纳。
3、几何部分。重点是平行四边形的性质及其判定定理。记住性质是关键,学会判定是重点。学会判定方法的选择,熟悉不同图形之间的区别和联系。掌握添加常用辅助线的方法,对常规题型要多练多总结。
(二)在学生自己经历解决问题的活动中,选择一个挑战性的问题,写下解决它的过程,包括遇到的困难、克服困难的方法及获得的体会。
(三)进一步培养学生的应用意识,建立数形结合的思想、化归思想、统计思想,培养归纳推理能力和演绎推理能力。
(四)通过本期的学习,让学生总结自己有哪些收获?有哪些需要改进的地方。
二、具体措施:
1、强化训练。本学期计算类和证明类的题型较多。在复习中要加强这方面的训练。特别是有关二次根式的计算,几何证明题要通过一定的练习,达到证明的过程简洁而又严谨。
2、严格要求。根据不同学生的学习情况,既要严格要求,又要区别分层对待。对基础较差的学生,尽量以课本为主,过好课本关,多鼓励多表扬,调动其学习数学的积极性,课后加强个别辅导;对基础较好的学生,适当提高难度,加大训练量。
3、加强证明题的训练。指导学生认真审题,对照图形弄清已知条件和结论,采用执果索因(或执因索果)的方法,探寻证题的方法与思路。引导学生如何弄清题意,怎样分析,怎样规范写出证明的过程。
八年级数学教案全集篇2
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.
2、会求一组数据的极差.
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差.
2、难点:本节课内容较容易接受,不存在难点.
三、课堂引入:
下表显示的是上海20_年2月下旬和20_年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
经计算可以看出,对于2月下旬的这段时间而言,20_年和20_年上海地区的平均气温相等,都是12度.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range)。
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案全集篇3
教学任务分析
教学目标
知识技能
探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.
数学思考
能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.
解决问题
通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
情感态度
在应用等腰梯形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.
重点
等腰梯形的性质及其应用.
难点
解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.
教学流程安排
活动流程图
活动的内容和目的
活动1想一想
活动2说一说
活动3画一画
活动4做—做
活动5练一练
活动6理一理
观察梯形图片,引入本节课的学习内容.
了解梯形定义、各部分名称及分类.
通过画图活动,初步发现梯形与三角形的转化关系.
探究得到等腰梯形的性质.
通过解决具体问题,寻找解决梯形问题的方法.
通过整理回顾,巩固知识、提高能力、渗透思想.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
观察下图中,有你熟悉的图形吗?它们有什么共同的特点?
演示图片,学生欣赏.
结合图片,教师引导学生注意这些图片的共同特征:一组对边平行而另一组对边不平行.
由现实中实际问题入手,设置问题情境,引出本课主题.通过学生观察图片和归纳图形的特点,培养学生的观察、概括能力.
[活动2]
梯形定义一组对边平行而另一组对边不平行的四边形叫做梯形.
学生根据梯形概念画出图形,教师可以进一步引导学生类比梯形与平行四边形的区别和联系.
通过类比,培养学生归纳、总结的能力.
问题与情景
师生行为
设计意图
一些基本概念
(1)(如图):底、腰、高.
(2)等腰梯形:两腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一个角是直角的梯形叫做直角梯形.
学生在小学已经对梯形有一定的感性认识,因此教师让学生自己介绍(1)中的基本概念,在聆听学生发言后,教师可以强调:①梯形与四边形的关系;
②上、下底的概念是由底的长短来定义的,而并不是指位置来说的.
熟悉图形,明确概念,为探究图形性质做准备.
[活动3]
画一画
在下列所给图中的每个三角形中画一条线段,
(1)怎样画才能得到一个梯形?
(2)在哪些三角形中,能够得到一个等腰梯形?
在学生独立探究的基础上,学生分组交流.
教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其正确作图.
本次活动教师应重点关注:
(1)学生在活动过程中能否发现梯形与三角形之间的联系,他们之间的转化方法.
(2)学生能否将等腰三角形转化为等腰梯形.
(3)学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.
等腰梯形的性质与等腰三角形相仿,因此在活动3中设计了第(2)题,在推导等腰梯形性质或需要添加辅助线时,可以借助等腰三角形来研究.尤其是根据等腰三角形是轴对称图形,可得到等腰梯形是轴对称图形这条性质,为活动4种开展探究奠定了基础.
问题与情景
师生行为
设计意图
[活动4]
做—做
探索等腰梯形的性质(引入用轴对称解决问题的思想).
在一张方格纸上作一个等腰梯形,连接两条对角线.
(1)这个图形是轴对称图形吗?对称轴在哪里?你能发现哪些相等的&39;线段和相等的角?学生画图并通过观察猜想;
(2)这个等腰梯形的两条对角线的长度有什么关系?
学生按照实验步骤,独立完成画图过程,观察图形,思考教师提出的问题,猜想、验证、归纳结论.
针对不同认识水平的学生,教师指导学生活动.
师生共同归纳:
①等腰梯形是轴对称图形,上下底的中点连线是对称轴.
②等腰梯形两腰相等.
③等腰梯形同一底上的两个角相等.
④等腰梯形的两条对角线相等.
教学中要注意引导学生证明等腰梯形的性质,尤其在证明“等腰梯形同一底上的两个角相等”这条性质时,“平移腰”和“作高”这两种常见的辅助线,在教学中头一次出现,可以借此机会,给学生介绍这两种辅助线的添加方法.
[活动5]
练—练
例1(教材P118的例1)略.
例2如图,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的长.
师生共同分析,寻找解决问题的方法和策略.
例1是等腰梯形性质的直接运用,请学生分析、解答,教师聆听,同时注意指导学生,在证明△EAD是等腰三角形时,要用到梯形的定义“上下底互相平行(AD∥BC)”这一点.
分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.
其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通过题目的练习与讲解应让学生知道:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在教学时应让学生注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.
问题与情景
师生行为
设计意图
例3已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求证:BE=CD.
分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
证明(略)
例2与例3这里给出的辅助线均是“平移一腰”,老师们在教学或练习中可以根据学生的实际情况,再引导、补充其他辅助线的添加方法,让学生多了解、多见识.
[活动6]
1.小结
2.布置作业
(1)已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.
(2)已知:如图,
梯形ABCD中,CD//AB,,.
求证:AD=AB—DC.
(3)已知,如图,
梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)
师生归纳总结:
解决梯形问题常用的方法:
(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);
(2)“作高”:使两腰在两个直角三角形中(图2);
(3)“延腰”:构造具有公共角的两个等腰三角形(图3);
(4)“平移对角线”:使两条对角线在同一个三角形中(图4);
(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).
尽量多地让学生参与发言是一个交流的过程.
梳理本节课应用过的辅助线添加方法,既可以锻炼学生思维,又可以留给学生继续探究的空间.
学生通过独立思考,完成课后作业,便于发现问题,及时查漏补缺.
八年级数学教案全集篇4
课型:
复习课
学习目标(学习重点):
1.针对函数及其图象一章,查漏补缺,答疑解惑;
2.一次函数应用的复习.
补充例题:
例1.如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系
(1)B出发时与A相距千米;
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时;
(3)B出发后小时与A相遇;
(4)求出A行走的路程S与时间t的函数关系式;
(5)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米,在图中表示出这个相遇点C.
例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.
(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;
(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a,b的值.
例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.
(1)求s与t之间的函数关系式.
(2)与图③相对应的P点的运动路径是:;P点出发秒首次到达点B;
(3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.
课后续助:
1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式
①用水量小于等于3000吨;②用水量大于3000吨.
(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元.
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是(填①或②),月租费是元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
3.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。结合风速与时间的图像,回答下列问题:
(1)在y轴()内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.
(4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
八年级数学教案全集篇5
知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数
能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
重点:函数的概念
难点:函数的概念
教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
教学设计:
引入:
信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?
新课:
问题:(1)如图是某日的气温变化图。
①这张图告诉我们哪些信息?
②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?
(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:
①这表告诉我们哪些信息?
②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?
一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
范例:例1判断下列变量之间是不是函数关系:
(5)长方形的宽一定时,其长与面积;
(6)等腰三角形的底边长与面积;
(7)某人的年龄与身高;
活动1:阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数的关系
思考:自变量是否可以任意取值
例2一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系式.
(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活动2:练习教材9页练习
小结:(1)函数概念
(2)自变量,函数值
(3)自变量的取值范围确定
作业:18页:2,3,4题
八年级数学教案全集篇6
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
八年级数学教案全集篇7
《梯形》教案
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的.分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
八年级数学教案全集篇8
教学建议
知识结构:
重点难点分析:
是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.
教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.
教法建议:
1.本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.
2.本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.
3.引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.
教学设计示例
一、教学目标
1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2.会进行简单的二次根式的除法运算;
3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4.培养学生利用二次根式的除法公式进行化简与计算的能力;
5.通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6.通过分母有理化的教学,渗透数学的简洁性.
二、教学重点和难点
1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.
2.难点:二次根式的除法与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课
学生回忆及得算数平方根和性质:(a0,b0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有(a0,b0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
让学生讨论这个式子成立的条件是什么?a0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.
例1化简:
(1);(2);(3);
解∶(1)
(2)
(3)
说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.
例2化简:
(1);(2);
解:(1)
(2)
让学生观察例题中分母的特点,然后提出,的问题怎样解决?
再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决.
学生讨论本节课所学内容,并进行小结.
(三)小结
1.商的算术平方根的性质.(注意公式成立的条件)
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1.化简:
(1);(2);(3).
2.化简:
(1);(2);(3)
六、作业
教材P.183习题11.3;A组1.
七、板书设计
八年级数学教案全集篇9
《图形的位似》这节课内容抽象而且学生以前没接触过,对学生来说接受起来难度很大,因此在教学的过程中,首先由手影这种学生较熟悉的形式让学生感受这种位置关系,然后通过动手操作的形式进一步探究位似图形的相关性质。在教学的过程中,为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识。探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新。
但是,这节课也存在很多不足之处:
1、学生动手操作、探究位似图形的过程都很顺利,但是很多小组在总结位似图形的性质时出项了语言表达的困难。
2、学生对于“每组对应点”认识还是不够,导致在判断位似图形时出现问题。
3、评价形式过于单调。一直是教师“很好”“太棒了”之类的评价,不能更好的调动学生的积极性。
4、小组合作时个别学生没有真正动起来。
5、没有让学生自己感受当位似图形不同时位似中心在位似图形的不同位置这一动态特点。
6、学生证明位似图形时证明过程还是不够严谨。
7、缺少了位似图形在生活中的应用。
改进措施:
1、通过小组合作交流的方式不断提高学生语言表达能力和逻辑思维能力。
2、强调“每组对应点”就是“所有的对应点”,在图上任意取几对对应点,通过连线,也经过位似中心,通过这样的动手实践,让学生印象更深刻。
3、通过各种途径评价学生,让自己的评价活泼多样。譬如:鼓励性眼神、肢体语言、同学们的掌声、定量评价、奖惩措施等等。
4、做好小组长的培训工作,让他们在小组中起到领导和协调的作用,抓住整个小组的节奏,让每个学生都参与进来,同时,多举行小组捆绑评价的活动,让后进的同学为了不拖后腿而不得不参与进来。
5、加强几何画板的学习和利用。信息技术与数学教学有机整合,有利于学生主动参与、乐于探究、勤于动手、动脑,体现了开放式的教育模式,开阔了学生的视野,推动了数学课堂现代化的发展。在这节课中,如果添加几何画板,那么位似中心和位似图形的五种位置关系就很形象的展现在我们面前。
6、加强学生几何题证明的条理性、严谨性的训练。培养学生的逻辑思维能力和语言的组织能力。
7、让学生在课下自己寻找我们生活中位似图形的影子,将数学和生活紧密联系起来。
在今后的教学中,我将牢记这些不足之处,不断改进,不断修炼自己,让自己的教学更进步,更成熟。
八年级数学教案全集篇10
教学目标:
1、在现实情境中,通过具体的操作活动,了解直角三角形的判定定理,
2、运用判定定理解决有关问题。
重点:直角三角形的判定定理。
难点:探索直角三角形的判定定理的应用。
教学过程:
一、回顾知识引入新课
1、直角三角形的定义:有一个角是直角的三角形叫直角三角形。
2、三角形内角和性质:三角形内角和等于180°。
3、三角形中线的定义:三角形顶点与对边中点连线段。
二、想一想,探求判定定理。
1、如图在△ABC中,如果∠A+∠B=90°那么△ABC是直角三形吗?
证明:∵∠A+∠B=90°(已知)
∠A+∠B+∠C=180°(△的内角和为180°)
∴∠C=180°-(∠A+∠B)=180°-90°=90°
∴△ABC是直角三角形(直角三角形定义)
直角△的判定定理1:两锐角互余的△是直角三角形。
在三角形中如果两锐角互余那么三角形是直角△
2、如果,三角形一边上的中线等这边的一半,那么这个△是直角△吗?
已知,如图在△ABC中,CD是AB边上的中线且CD=1/2AB求证△ABC是RT△
证明∵CD是△ABC的AB边上中线(已知)
AD=BD=1/2AB(中点的性质)
∵CD=1/2AB(已知)
∴CD=BDCD=AD
∴∠2=∠B∠1=∠A(等边对等角)
∵∠A+∠B+∠ABC=180(三角形内角和性质)
∴∠A+∠B+(∠1+∠2)=180
∴∠A+∠B+∠A+∠B=180
∴2(∠A+∠B)=180
∠A+∠B=90
所以三角形ABC是直角三角形(直角三角形判定定理1)
三、巩固与练习
1、在△ABC,若∠A=35,∠B=55则△ABC是△?
2、在△ABC中,CD是AB边上的中线,CD=1/2AB,那么△ABC的形状是()
A:锐角△B:钝角△C:直角△D:以上都不对
3、在等边△ABC中,延长BC至D,使CD=CB,使AC=1/2BD。求证:△ABD是直角△,
证明:∵CD=CB(已知)
∴点C为BC的中点(中点的定义)
∴AC为△ABC的边BD上的中线(中线的定义)
∵AC=1/2BD(已知)
∴△ABD是直角△(直角△的判定定理2)
四、小结:这节课学习了直角三角形两个判定定理,
1、定理1:两锐角互余的三角形是直角三角形。
2、在三角形中如果一条边上的中线,等于这条边的一半的三角形是直角三角形。
五、作业布置:
课本87页练习题。
八年级数学教案全集篇11
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
八年级数学教案全集篇12
一、分解因式
※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
※2.因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘.
二、提公共因式法
※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法。
※2.概念内涵:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,ab+ac=a(b+c)
※3.易错点点评:
(1)注意项的.符号与幂指数是否搞错;
(2)公因式是否提彻底;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉。
三、运用公式法
※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法。
※2.主要公式:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;
③二项是异号.
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍。
※5.因式分解的思路与解题步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)因式分解的最后结果必须是几个整式的乘积;
(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。
八年级数学教案全集篇13
教学目标:
1、理解运用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的综合运用。
3、进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5:a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
八年级数学教案全集篇14
一、目标要求
1.理解掌握分式的四则混合运算的顺序。
2.能正确熟练地进行分式的加、减、乘、除混合运算。
二、重点难点
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
三、解题方法指导
【例1】计算:(1)[++(+)]·;
(2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四则混合运算要注意运算顺序及括号的关系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】计算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
(2)原式=[-]·=-=-====。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
四、激活思维训练
▲知识点:求分式的值
【例】已知x+=3,求下列各式的值:
八年级数学教案全集篇15
教学任务分析
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.
解决问题
一、会进行同分母和异分母分式的加减运算.
二、会解决与分式的加减有关的简单实际问题.
三、能进行分式的加、剪、乘、除、乘方的混合运算.
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.
重点
分式的加减法.
难点
异分母分式的加减法及简单的分式混合运算.
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.
通过练习、作业进一步巩固分式的运算.
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间.
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的加减,提出本节课的主题.
教师通过课件展示问题.学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.
[活动2]
1.提出小学数学中一道简单的分数加法题目.
2.用课件引导学生用类比法,归纳总结同分母分式加法法则.
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习.
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.
学生在教师的引导下,探索同分母分式加减的运算方法.
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.
由两个学生板书自主完成练习,教师巡视指导学生练习.
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.
让学生进一步体会同分母分式的加减运算.
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习.
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式.
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.
让学生体会运用的公式解决问题的过程.
锻炼学生运用法则解决问题的能力,既准确又有速度.
提高学生的计算能力.
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.
提高学生综合应用知识的能力.
[活动5]
1.教师通过课件出2个分式混合运算的小练习.
2.总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简.
3.作业:
a)教科书习题16.2第4、5、6题.
学生练习、巩固.
教师巡视指导.
学生完成、交流.,师生评价.
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.
教师布置作业.
锻炼学生运用法则进行运算的能力,提高准确性及速度.
提高学生归纳总结的能力.