教案吧 > 初中教案 > 八年级教案 >

八年级下册教案数学

时间: 新华 八年级教案

教案可以帮助教师了解学生的学习情况和需求,从而更好地指导教师进行教学,提高教学效果和学生的学习效果。怎样才能写好八年级下册教案数学?这里给大家提供八年级下册教案数学,方便大家学习。

八年级下册教案数学篇1

一、教学目标

(一)知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2、67×132+25×2、67+7×2、67=;

(3)992–1=。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉。引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶。

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

P165的探究(略);

2、看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级下册教案数学篇2

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

八年级下册教案数学篇3

第四章因式分解

1、因式分解

①把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式

2、提公因式法

①多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b就是多项式ab+bc各项的公因式

②如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。从而将多项式化成两个因式乘积的形式。这种因式分解的方法叫做提公因式法

3、公式法

①A2-b2=(a+b)(a-b)

②当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解

③a2+2ab+b2=(a+b)2。a2-2ab+b2=(a-b)2

④根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解叫做公式法

八年级下册教案数学篇4

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1.平移

2.平移的性质:

⑴经过平移,对应点所连的线段平行且相等;

⑵对应线段平行且相等,对应角相等。

⑶平移不改变图形的大小和形状(只改变图形的位置)。

(4)平移后的图形与原图形全等。

3.简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;

⑵需要平移的方向;

⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;

⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1.旋转

2.旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3.简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

八年级下册教案数学篇5

一、学生起点分析

通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】:已知,请问:①可能是整数吗?②可能是分数吗?

【释一释】:释1.满足的为什么不是整数?

释2.满足的为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段:

1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形(右1)

2.三边长都是有理数

2.只有两边长是有理数

3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足的

解:(右2)

仿:在数轴上表示满足的

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容:

1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

八年级下册教案数学篇6

平均数

一、教学目的:

1、使学生理解数据的权和加权平均数的概念

2、使学生掌握加权平均数的计算方法

3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:

1、重点:会求加权平均数

2、难点:对“权”的理解

三、例习题意图分析

1、教材P136的问题及讨论栏目在教学中起到的作用。

(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。

(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。

(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。

(4)、P137的云朵其实是平均数定义,小方块则强调了权意义。

2、教材P137例1的作用如下:

(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。

(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。

(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。

3、教材P138例2的作用如下:

(1)这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。

(2)例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。

(3)它也充分体现了统计知识在实际生活中的广泛应用。

八年级下册教案数学篇7

不等关系

一、教学目标

1、知识与技能目标

①理解不等式的意义.

②能根据条件列出不等式.

2、过程与方法目标

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

3、情感与态度目标

通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的信心和兴趣。

二、教学重点

通过探寻实际问题中的不等式关系,认识不等式。

三、教学难点

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

四、教学过程

第一环节:创设问题情景,引入新课

活动内容:寻找相等的量和不等的量

师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

生:

师:还有其他例子吗?

(同学们各抒己见)

师:我这里也有一些例子。拿出给同学们参考一下。

八年级下册教案数学篇8

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量

2、会求一组数据的极差

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差

2、难点:本节课内容较容易接受,不存在难点。

三、例习题的意图分析

教材P151引例的意图

(1)、主要目的是用来引入极差概念的

(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量

(3)、交待了求一组数据极差的方法。

四、课堂引入:

引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。

五、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。

六、随堂练习:

1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .

2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .

3、下列几个常见统计量中能够反映一组数据波动范围的是( )

A.平均数 B.中位数 C.众数 D.极差

4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )

A. 8 B.16 C.9 D.17

答案:1. 497、3850 2. 4 3. D 4.B

七、课后练习:

1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )

A. 0.4 B.16 C.0.2 D.无法确定

在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )

A. 87 B. 83 C. 85 D无法确定

3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。

4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。

5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)

90、95、87、92、63、54、82、76、55、100、45、80

计算这组数据的极差,这个极差说明什么问题?

将数据适当分组,做出频率分布表和频数分布直方图。

答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成绩优劣差距较大。(2)略

八年级下册教案数学篇9

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1、平移

2、平移的性质:

⑴经过平移,对应点所连的线段平行且相等;

⑵对应线段平行且相等,对应角相等。

⑶平移不改变图形的大小和形状(只改变图形的位置)。

(4)平移后的图形与原图形全等。

3、简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;

⑵需要平移的方向;

⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;

⑵作出这些点平移后的对应点;

⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1、旋转

2、旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3、简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:

⑴平移变换;

⑵旋转变换;

⑶轴对称变换;

⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;

⑹轴对称变换与平移变换的组合。

八年级下册教案数学篇10

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析:

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:

掌握正方形的性质与判定,并进行简单的推理。

难点:

探索正方形的判定,发展学生的推理能

教学方法:

类比与探究

教具准备:

可以活动的四边形模型。

教学过程:

一:复习巩固,建立联系。

【教师活动】

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

【学生活动】

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

【教师活动】

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

二:动手操作,探索发现。

活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

【学生活动】

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

观察发现,从活动中体会。

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

【学生活动】

小组讨论,分组回答。

【教师活动】

总结板书:

㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

设置问题③正方形有那些性质?

【学生活动】

小组讨论,举手抢答。

【教师活动】

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

学生活动

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

教师活动

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

学生活动

小组充分交流,表达不同的意见。

教师活动

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的`判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

三,应用体验,推理证明。

出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

方法一解:∵四边形ABCD是正方形

∴∠ABC=90°(正方形的四个角是直角)。

BC=AB=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的对角线互相平分)

∴AO=×4=2cm

方法二:证明△AOB是等腰直角三角形,即可得证。

学生活动

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

教师活动

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

学生活动

小组交流,分析题意,整理思路,指名口答。

教师活动

说明思路,从已知出发或者从已有的判定加以选择。

四,归纳新知,梳理知识。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

发表评论

八年级下册教案数学篇11

教学目标:

一、知识与技能

1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。

三、情感态度与价值观

1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。

2、通过分组讨论,培养学生合作交流意识和探索精神。

教学重点:理解和领会反比例函数的概念。

教学难点:领悟反比例的概念。

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。

师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。

教师组织学生讨论,提问学生,师生互动。

在此活动中老师应重点关注学生:

①能否积极主动地合作交流。

②能否用语言说明两个变量间的关系。

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。

分析及解答:

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有

的形式,其中k是常数。

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。

师生行为

学生先独立思考,在进行全班交流。

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念。

概念:如果两个变量x,y之间的关系可以表示成

的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm。那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流。教师提出问题,关注学生思考。此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值。

师生行为:

学生独立思考,然后小组合作交流。教师巡视,查看学生完成的情况,并给予及时引导。在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动。

分析及解答:

1、只有xy=123是反比例函数。

2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值。

解:(1)设,因为x=2时,y=6,所以有

解得k=12

因此

(2)把x=4代入,得

三、巩固提高

活动5

1、已知y是x的反比例函数,并且当x=3时,y=8。

(1)写出y与x之间的函数关系式。

(2)求y=2时x的值。

2、y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表。

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”。

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象。反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象。

八年级下册教案数学篇12

教材分析

1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

学情分析

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

3、学生认知障碍点:根据问题信息写出一次函数的表达式。

教学目标

1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

2、能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

教学重点和难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

八年级下册教案数学篇13

教学目标

1、 理解并掌握等腰三角形的判定定理及推论

2、 能利用其性质与判定证明线段或角的相等关系.

教学重点: 等腰三角形的判定定理及推论的运用

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.

教学过程:

一、复习等腰三角形的性质

二、新授:

I提出问题,创设情境

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.

II引入新课

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB=AC吗?

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?

2.引导学生根据图形,写出已知、求证.

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.

4.引导学生说出引例中地质专家的测量方法的根据.

III例题与练习

1.如图2

其中△ABC是等腰三角形的是[      ]

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.

④若已知AD=4cm,则BC______cm.

3.以问题形式引出推论l______.

4.以问题形式引出推论2______.

例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?

练习:P53练习1、2、3。

IV课堂小结

1.判定一个三角形是等腰三角形有几种方法?

2.判定一个三角形是等边三角形有几种方法?

3.等腰三角形的性质定理与判定定理有何关系?

4.现在证明线段相等问题,一般应从几方面考虑?

V布置作业:P56页习题12.3第5、6题

八年级下册教案数学篇14

第一章三角形的证明

1、等腰三角形

①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)

②全等三角形的对应边相等、对应角相等

③定理:等腰三角形的两底角相等,即位等边对等角

④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合

⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°

⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)

⑦定理:三个角都相等的三角形是等边三角形

⑧定理;有一个角等于60°的等腰三角形是等边三角形

⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形

①定理:直角三角形的两个锐角互余

②定理有两个角互余的三角形是直角三角形

③勾股定理:直角三角形两条直角边的平方和等于斜边的平方

④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形

⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题

⑥一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理

⑦定理:斜边和一条直角边分别相等的两个直角三角形全等

3、线段的垂直平分线

①定理:线段垂直平分线上的点到这条线段两个端点的距离相等

②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上

4、角平分线

①定理:角平分线上的点到这个角的两边的距离相等

②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上

八年级下册教案数学篇15

教学目标:

1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

教学重点:

去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

教学难点:

验根的方法。分式方程增根产生的原因。

教学准备:

小黑板。

教学过程:

复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

(1);(2);(3);(4);

(5);(6);(7);(8)。

讲授新课:

1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

2.讨论分式方程的解法:

(1)复习解方程时,怎样去分母?

(2)讲解例1:解方程(按课文讲解)

归纳:解分式方程的基本思想:

分式方程整式方程

(3)讲解例2:解方程(按课文讲解)

归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

想一想:产生增根的原因是什么?

巩固练习:P1451t,2t。

课堂小结:什么叫做分式方程?

解分式方程时,为什么要检验?怎样检验?

布置作业:见作业本。

30171