八年级上册数学教案简单
教案使教师能够理解教材内容,准确把握教材的重点和难点,并选择科学、合适的教学方法。怎么写出优秀的八年级上册数学教案简单?这里给大家分享八年级上册数学教案简单,方便大家学习。
八年级上册数学教案简单篇1
一、内容和内容解析
1、内容
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法。
2、内容解析
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入。学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用。它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备。
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系。
二、目标和目标解析
1、教学目标
(1)理解三角形的高、中线与角平分线等概念;
(2)会用工具画三角形的高、中线与角平分线;
2、教学目标解析
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念。
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质。
(3)掌握三角形的高、中线与角平分线的画法。
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点。
三、教学问题诊断分析
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上。
三角形的`中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点。
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上。而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别。
八年级上册数学教案简单篇2
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=
2.机动题:(填空)x2-8x+m=(x-4)(),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1),一课一练
八年级上册数学教案简单篇3
教学目标
1.了解角平分线的性质,并运用其解决一些实际问题。
2.经历操作,推理等活动,探索角平分线的性质,发展空间观念,在解决问题的过程中进行有条理的思考和表达。
教材分析
重点:角平分线性质的探索。
难点:角平分线性质的应用。
教学方法:
预学----探究----精导----提升
教学过程
一创设问题情境,预学角平分线的性质
阅读课本P128-P129,并完成预学检测。
二合作探究
如图,OC为∠AOB的角平分线,P为OC上任意一点。
提问:
1.如何画出∠AOB的平分线?
2.若点P到角两边的距离分别为PD,PE,量一量,PD,PC是否相等?你能说明为什么吗?
让学生活动起来,通过测量,比较,得出结论。
教师鼓励学生大胆猜测,肯定它们的发现。
归纳:角平分线上任意一点到角两边的距离相等。
三想一想,巩固角平分线的性质
三条公路两两相交,为更好的使公路得到维护,决定在三角区建立一个公路维护站,那么这个维护站应该建在哪里?才能使维护站到三条公路的距离都相等?
三做一做,拓展课题
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
让学生充分讨论,鼓励学生自主完成。
教师归纳:
因为射线AP是△ABC的外角∠CAE平分线,
所以PD=PE(角平分线上的点到角两边的距离相等)
所以PB+PD=PB+PE
又PB+PE>BE(三角形两边之和大于第三边)
所以PB+PD>BE
思考:若CP也平分△ABC中的∠ACB的外角,则射线BP有怎样的性质?点P又有怎样的位置?
四课堂练习
课本P130练习
五小结
本节课学习了角平分线的性质:角平分线上的点到这个角两边的距离相等,反过来,到一个角两边距离相等的点,在这个角的平分线上,三角形的三条角平分线交于一点,且这一点到三角形三边的距离相等。
六作业
1.课本P130习题A组T1,T2
2.基础训练同步练习。
3.选作拓展题。
七课后反思:
新旧教法对比:新教法更有利于培养学生合作学习的能力。
学生对于角平分线的性质可以倒背如流,但就是容易把到角两边的距离看错,在以后的教学中要多加强对距离的认识。
学案
学习目标:
1了解角平分线的性质。
2并运用角平分线的性质解决一些实际问题。
预学检测:
1角平分线上任意一点到相等。
2⑴如图,已知∠1=∠2,DE⊥AB,
DF⊥AC,垂足分别为E、F,则DE____DF.
⑵已知DE⊥AB,DF⊥AC,垂足分别
为E、F,且DE=DF,则∠1_____∠2.
学点训练:
1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()
A.PC=PDB.OC=OD
C.∠CPO=∠DPOD.OC=PC
2.如图,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分线,DE⊥AB于E,
若AC=10cm,则△DBE的周长等于()
A.10cmB.8cmC.6cmD.9cm
巩固练习:
已知:如图,在△ABC中,∠A=90°,AB=AC,
BD平分∠ABC.求证:BC=AB+AD
拓展提升:
如图,P为△ABC的外角平分线上一点,且PE⊥AB,PD⊥AC,E,D分别是垂足,试探索BE与PB+PD的大小关系。
八年级上册数学教案简单篇4
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
八年级上册数学教案简单篇5
教学目标
1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.
2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.
3.渗透角平分线是满足特定条件的点的集合的思想。
教学重点和难点
角平分线的性质定理和逆定理的应用是重点.
性质定理和判定定理的区别和灵活运用是难点.
教学过程设计
一、角平分钱的性质定理与判定定理的探求与证明
1,复习引入课题.
(1)提问关于直角三角形全等的判定定理.
(2)让学生用量角器画出图3-86中的∠AOB的角
平分线OC.
2.画图探索角平分线的性质并证明之.
(1)在图3-86中,让学生在角平分线OC上任取一
点P,并分别作出表示P点到∠AOB两边的距离的线段
PD,PE.
(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.
(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.
3.逆向思维探求角平分线的判定定理.
(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.
(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.
(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.
4.理解角平分线是到角的两边距离都相等的点的集合.
(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).
(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).
由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.
二、应用举例、变式练习
练习1填空:如图3-86(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D
PE⊥OB于E.∴---------(角平分线的性质定理).
(2)∵PD⊥OA,PE⊥OB,----------∴OP平分∠AOB(-------------)
例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.
(l)求证:F到AB,BC和AC边的距离相等;
(2)求证:AF平分∠BAC;
(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;
(4)怎样找△ABC内到三边距离相等的点?
(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?
说明:
(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.
(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。
(3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力.
练习2已知△ABC,在△ABC内求作一点P,使它到△ABC三边的距离相等.
练习3已知:如图3-88,在四边形ABCD中,AB=AD,AB⊥BC,AD⊥DC.求证:点C在∠DAB的平分线上.
例2已知:如图3-89,OE平分∠AOB,EC⊥OA于C,ED⊥OB于D.求证:(1)OC=OD;(2)OE垂直平分CD.
分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到OC=OD.这样处理,可避免证明两个三角形全等.
练习4课本第54页的练习.
说明:训练学生将生活语言翻译成数学语言的能力.
三、互逆命题,互逆定理的定义及应用
1.互逆命题、互逆定理的定义.
教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.
2.会找一个命题的逆命题,并判定它是真、假命题.
例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:
(1)两直线平行,同位角相等;
(2)直角三角形的两锐角互余;
(3)对顶角相等;
(4)全等三角形的对应角相等;
(5)如果x=y,那么x=y;
(6)等腰三角形的两个底角相等;
(7)直角三角形两条直角边的平方和等于斜边的平方.
说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”.
3.理解互逆命题、互逆定理的有关结论.
例4判断下列命题是否正确:
(1)错误的命题没有逆命题;
(2)每个命题都有逆命题;
(3)一个真命题的逆命题一定是正确的;
(4)一个假命题的逆命题一定是错误的;
(5)每一个定理都一定有逆定理.
通过此题使学生理解互逆命题的真假性关系及互逆定理的定义.
四、师生共同小结
1.角平分线的性质定理与判定定理的条件内容分别是什么?
2.三角形的角平分线有什么性质?怎样找三角形内到三角形三边距离相等的点?
3.怎样找一个命题的逆命题?原命题与逆命题是否同真、同假?
五、作业
课本第55页第3,5,6,7,8,9题.
课堂教学设计说明
本教学设计需2课时完成.
角平分线是符合某种条件的动点的集合,因此,利用教具,投影或计算机演示动点运动的过程和规律,更能展示知识的形成过程,有利于学生自己观察,探索新知识,从中提高兴趣,以充分培养能力,发挥学生学习的主动性.
八年级上册数学教案简单篇6
教学目标:
1、理解三角形的内外角平分线定理;
2、会证明三角形的内外角平分线定理;
3、通过对定理的证明,学习几何证明方法和作辅助线的方法;
4、培养逻辑思维能力。
教学重点:
1、几何证明中的证法分析;
2、添加辅助线的方法。
教学难点:
如何添加有用的辅助线。
教学关键:
抓住相似三角形的判定和性质进行教学。
教学方法:
“四段式”教学法,即读、议、讲、练。
一、阅读课本,注意问题
1、复习旧知识,回答下列问题
①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。
②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?
③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?
④几何证明中怎样构造有用的相似三角形?
2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。
提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。
3、注意下列问题:
⑴如图,等腰中,顶角的平分线交底边于,那么,图中出现的相等线段是__即__。通过比较得到。
⑵如果上面问题中的换成任意三角形,即右图的,平分,交于,那么,是不是还成立?请同学们用刻度尺量一量线段的长度,计算,然后再比较(小的误差忽略不计)。
⑶三角形的内角平分线定理说的是什么意思?课本上是怎样写已知、求证的?
⑷课本上是怎样进行分析、证明的?都用了哪些学过的知识?证明的根据是什么?
⑸课本上证明的过程中是怎样作辅助线的?这样作辅助线的目的是什么?
⑹过、、三点能不能作出有用的辅助线?如果能,辅助线应该怎样作?各能作出几条?
⑺就作出的辅助线,怎样寻找证明的思路和方法?分析的过程中用到了哪些知识?
⑻你能不能类似地叙述三角形的外角平分线定理?
⑼回答练习中的第一题。
⑽总结证明方法和作辅助线的方法。
⑾注意内分点和外分点两个概念及其应用。
4、阅读指导丛书《平面几何》第二册。
⑴注意辅助线中平行线的作法,通过对图、、的观察分析,找出解决问题的证明方法。
⑵丛书利用正弦定理中的面积公式来证明三角形的内角平分线定理,既把有关的知识联系起来、拓展了解题思路,又为我们提供了一种比较简单的解决问题的方法,值得我们借鉴。要注意三角形面积的几种不同的计算方法。
二、互相讨论,解答疑点
1、上面提出的问题,希望大家独立思考、独立完成。根据已有的思路和线索,参照课本上的方法进行分析。
2、思考中实在是有困难的同学,可以和周围的同学互相讨论,发表看法;也可以请老师帮助、提示或指点。
3、把同学之间讨论的结果,整理成一个完整的证明过程,写出每一步证明的根据。最后,适当地总结一些解题的经验和方法。
三、讲评纠正,整理内容
1、把学生讨论的结果归纳出来,加以补充说明,纠正错误后进行适当的分类总结,点明证题法中的要点。
①证明比例式的依据是平行截割定理的推论,因此,我们作的辅助线都是平行线。
②从上述几种证明方法可以看出,证明的关键在于通过作辅助线把某些线段“移动”到适当的位置,以便根据平行截割定理的推论得出所要的结论。
③辅助平行线的作法,只能是过__三点分别作不过、三点的边(线段)的平行线,和另一条边(线段)的延长线相交,构成一个等腰三角形,达到“移动”的目的。
2、整理教学内容
⑴线段的内分点和外分点
(ⅰ)定义:
①在线段上,把线段分成两条线段的点叫做这条线段的内分点。
②在线段的延长线上的点叫做这条线段的外分点。
(ⅱ)举例
点在线段上,把线段分成了和两条线段,所以,点是线段的内分点,线段和叫做点内分线段所得的两条线段。
点在线段的延长线上,和、两个端点构成了、两条线段,所以,点是线段的外分点,线段和叫做点外分线段所得的两条线段。
(ⅲ)条件
①内分点的条件:
a)在已知线段上;
b)把已知线段分成另外两条线段。
②外分点a)在已知线段的延长线上;
b)和已知线段的两端点构成另外的两条线段。
(ⅳ)特殊情况
a)线段的中点是不是线段的内分点?内分点是不是线段的中点?
b)线段的黄金分割点是不是线段的内分点?内分点是不是线段的黄金分割点?
c)一条已知线段有几个中点?有几个黄金分割点?有几个内分点?几个外分点?
(ⅰ)定理:三角形的内角平分线分对边所得的两条线段与夹这个角的两边对应成比例。
(ⅱ)已知:中,平分,交于。
求证:__。
(ⅲ)简单分析
从结论来考虑,横着看,两个比的前项、在中,两个比的后项、在中。按照相似三角形的性质,只要∽,那么,结论就是成立的。但是,与不是一对相似三角形,所以,不可能用相似三角形来证明。竖着看,有和,事实上,不成一个三角形。若是从“平行线分两条线段所得的线段对应成比例”(平行截割定理的推论)来考虑,显然,图中也没有平行线。因此,要想得到结论,只有把其中的某条线段进行适当的移动,使其构成相似三角形的对应边,或者成为两条直线上被平行线截得的对应线段。这样,我们就确定了辅助线的作法以平行线为主。
例如,把线段绕着它的端点旋转适当的角度到图中的位置(即的延长线)。由于旋转不改变线段的长度,所以,从旋转情况可得。由于平分,所以,连接后可以证明。因此,实际证明时,一般都叙述为“过点作交的延长线于”。不管是哪种说法,其结果都是一样的。类似地,我们还可以把线段绕着它的端点旋转适当的角度到端点落在线段的延长线上,同样也可以证明。
(ⅳ)证法提要
①证法一:如上图,过点作交的延长线于,可以得到:
a)(为什么?);
b)(为什么?)。通过等量代换便可以得到结论。同样,过点作的平行线和边的延长线相交,也可以证得结论,证明的方法是完全一样的。
②证法二:如右图,过点作交的延长线于,可以得到:
a)(为什么?);
b)(为什么?)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和的延长线相交,也可以得到结论,证明的方法是完全一样的。
③证法三:如右图,过点作交于,可以得到:
a)(为什么?);
b)(为什么?);
c)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和相交,也可以得到结论,证明的方法是完全一样的。
④证法四:如下页图,过点作交于,根据三角形的面积公式可得:__
又根据正弦定理的面积公式有:
通过比较就可以得到:所要的结论。
(ⅰ)定理:三角形的外角平分线外分对边所得的两条线段与夹这个角的两边对应成比例。
(ⅱ)已知:中,是的一个外角,平分,交的延长线于。
求证:__。
(ⅲ)简单分析:(类同内角平分线定理的分析方法)
(ⅳ)证法提要;(类同内角平分线定理的分析方法)
四、小结全节,练习巩固
1、小结
⑴两个定理
(ⅰ)三角形的内角平分线定理
(ⅱ)三角形的外角平分线定理
⑵证明方法
分为四大类共七种方法。
2、练习
⑴教材,2、3两题。
⑵补充题:
①画任意一个三角形的某个角的内外角平分线,说明内外角平分线之间的关系,证明你的结论。
②画等腰三角形的外角平分线,说明外角平分线和底边之间的关系,证明你的结论。
3、作业
教材,17、18两题。
八年级上册数学教案简单篇7
【教学目标】
1、了解三角形的中位线的概念
2、了解三角形的中位线的性质
3、探索三角形的中位线的性质的一些简单的应用
【教学重点、难点】
重点:三角形的中位线定理。
难点:三角形的中位线定理的证明中添加辅助线的思想方法。
【教学过程】
(一)创设情景,引入新课
1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?
2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片
(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?
(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?
3、引导学生概括出中位线的概念。
问题:(1)三角形有几条中位线?(2)三角形的`中位线与中线有什么区别?
启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。
4、猜想:DE与BC的关系?(位置关系与数量关系)
(二)、师生互动,探究新知
1、证明你的猜想
引导学生写出已知,求证,并启发分析。
(已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)
启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)
启发2:证明线段的倍分的方法有哪些?(截长或补短)
学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。
证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),
∴DF∥BC(根据什么?),
∴DE1/2BC
2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。
(三)学以致用、落实新知
1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?
2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?
3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。
求证:四边形EFGH是平行四边形。
启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?
启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?
证明:如图,连接AC。
∵EF是⊿ABC的中位线,
∴EF1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。
同理,HG1/2AC。
∴EFHG。
∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)
挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?
(四)学生练习,巩固新知
1、请回答引例中的问题(1)
2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点。求证:∠PNM=∠PMN
(五)小结回顾,反思提高
今天你学到了什么?还有什么困惑?
八年级上册数学教案简单篇8
一、教学目标
(一)知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
(二)过程与方法
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
(三)情感、态度与价值观
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
(一)教学重点
数轴的三要素,用数轴上的点表示有理数。
(二)教学难点
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
八年级上册数学教案简单篇9
第三十四学时:14.2.1平方差公式
一、学习目标:
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)20__×1999(2)998×1002
导入新课:计算下列多项式的积.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
八年级上册数学教案简单篇10
重点与难点分析:
本节内容的重点是及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高。中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。
本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知。求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。
教法建议:
数学教学的核心是学生的“再创造”。根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题。解决问题。为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法。具体说明如下:
(1)发现问题
本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求。
(2)解决问题
对所得到的结论通过教师启发,让学生完成证明。指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论。多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念。
(3)加深理解
学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合。适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让中国学习联盟胆参与课堂教学,使他们“听”有所“思”。“练”有所“获”,使传授知识与培养能力融为一体。一。教学目标:
1、掌握定理的证明及这个定理的两个推论;
2、会运用证明线段相等;
3、使学生掌握一般文字题的证明;
4、通过文字题的证明,提高学生几何三种语言的互译能力;
5、逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;
6、渗透对称的数学思想,培养学生数学应用的观点;
教学重点:
及其推论
教学难点:
文字题的证明
教学用具:
直尺,微机
教学方法:
问题探究法
教学过程:
1、性质定理的发现与证明
(1)投影显示:
一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),
(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?
师生讨论后,确定用全等三角形证明,学生亲自动手作出证明。证明略。
教师指出:定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等。
2、推论1的发现与证明
投影显示:
由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边。
启发学生自己归纳得出:顶角平分线。底边上的中线。底边上的高互相重合。
学生口述证明过程。
教师指出:等腰三角形的顶角的平分线,底边上的中线。底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。
3、推论2的发现与证明
投影显示:
一般学生都能发现等边三角形的三个内角都为。然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的“三线合一”。
4、定理及其推论的应用
小结:渗透分类思想,培养思维的严密性。
例2。已知:如图,点D。E在△ABC的边BC上,AB=AC,AD=AE
求证:BD=CE
证明:作AF⊥BC,,垂足为F,则AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(辅助线作法)
∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)
∴BD=CE
强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定。
例3、已知:如图,D是等边△ABC内一点,DB=DA,BP=AB,DBP=DBC
求证:P=
证明:连结OC
在△BPD和△BCD中
在△ADC和△BCD中
因此,P=
例4求证:等腰三角形两腰上中线的交点到底边两端点的距离相等
已知:如图,AB=AC,BD。CE分别为AC边。AB边的中线,它们相交于F点
求证:BF=CF
证明:∵BD。CE是△ABC的两条中线,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴1=2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
设想:例1到例4,由易到难地安排学生对新授内容的练习和巩固。在以上教学中,特别注意“一般解题方法”的运用。
在四个例题的教学中,充分发挥学生与学生之间的互补性,从而提高认识,完善认知结构,使课堂成为学生发挥想象力和创造性的“学堂”
5、反馈练习:
出示图形及题目:
将实际问题数学化,培养学生应用能力。
6、课堂小结:
教师引导学生小结
(1)
(2)等边三角形的性质
(3)文字证明题的书写步骤
7、布置作业:
a、书面作业P961.2
b、上交作业P964.7.8
c、思考题:
已知:如图:在△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE。
求证:EF⊥BC
证明:作BC边上的高AM,M为垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC为△AEF的外角
∴∠BAC=∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七、板书设计:
(略)
八年级上册数学教案简单篇11
教学目标:
1、本节课使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2、使学生掌握运用去分母或换元的方法解可化为一元二次方程的分式方程;使学生理解转化的数学基本思想;
3、使学生能够利用最简公分母进行验根。
教学重点:
可化为一元二次方程的分式方程的解法。
教学难点:
教学难点:解分式方程,学生不容易理解为什么必须进行检验。
教学过程:
在初二我们已经学过分式方程的概念及可化为一元一次方程的分式方程的解法,知道了解可化为一元一次方程的分式方程的解题步骤以及验根的目的,了解了转化的思想方法的基本运用.今天,我们将在此基础上,来学习可化为一元二次方程的分式方程的解法.“12.7节”是在学生已经掌握的同类型的方程的解法,直接点出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相类同,及产生增根的原因,以激发学生归纳总结的欲望,使学生理解类比方法在数学解题中的重要性,使学生进一步加深对“转化”这一基本数学思想的理解,抓住学生的注意力,同时可以激起学生探索知识的欲望。
为了使学生能进一步加深对“类比”、“转化”的理解,可以通过回忆复习可化为一元一次方程的分式方程的解法,探求解可化为一元二次方程的分式方程的解法,同时通过对产生增根的分析,来达到学生对“类比”的方法及“转化”的基本数学思想在数学学习中的重要性的理解,从而调动学生能积极主动地参与到教学活动中去。
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.
二、新课讲解:
通过新课引入,可直接点出本节的内容:可化为一元二次方程的分式方程及其解法,类比地提出可化为一元二次方程的分式方程的解法与可化为一元一次方程的分式方程的解法相同。
点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
八年级上册数学教案简单篇12
教学目标:
1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线、线段垂直平分线的有关性质.
教学重点:
1、角、线段是轴对称图形
2、角的平分线、线段垂直平分线的有关性质
教学难点:
角的平分线、线段垂直平分线的有关性质
准备活动:
准备一个三角形、一张画好一条线段的纸张
教学过程:
先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.
一、探索活动
教师示范:(按以下步骤折纸)
1、在准备好的三角形的每个顶点上标好字母;A、B、C.把角A对折,使得这个角的两边重合.
2、在折痕(即平分线)上任意找一点C,
3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足.
4、将纸打开,新的折痕与OB边交点为E.
教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的概念.
学生通过思考应该大部分都能明白角是轴对称图形这个结论.
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?
学生应该很快就找到相等的线段.
下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.
巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?
(1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.
(2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.
内容二:线段是轴对称图形吗?
做一做:按下面步骤做:
1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.
2、在折痕上任取一点C,沿CA将纸折叠;
3、把纸展开,得到折痕CA和CB.
观察自己手中的图形,回答下列问题:
(1)CO与AB有什么样的位置关系?
(2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?
在折痕上另取一点,再试一试,你又有什么发现?
学生会得到下面的结论:
(1)线段是轴对称图形.
(2)它的对称轴垂直于这条线段并且平分它.
(3)对称轴上的点到这条线段的距离相等.
应用:
(1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.
(2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.
小结:
(1)角是轴对称图形.
(2)角平分线上的点到这个角的两边的距离相等.
(3)线段是轴对称图形.
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.
(5)线段垂直平分线上的点到这条线段的两个端点距离相等.
作业:课本P193习题7.2:1、2、3.
教学后记:
学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解.的部分原因是学生忘记了点但直线的距离是什么一回事.而对于中垂线的理解较好.基本上能找到当中相等的线段,并且用学过的知识予以证明.内容较多,容量较大.课后还要加强理解和练习.
八年级上册数学教案简单篇13
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等.
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
6.基本判定:
⑴等腰三角形的判定:
①有两条边相等的.三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
八年级上册数学教案简单篇14
设计说明
1.为学生提供丰富而典型的学习资源。
小学低年级学生在学习抽象的几何概念时,需要借助直观形象的支持。因此本教学设计注重从学生熟悉的生活情境入手,通过观察与操作、生生交流和师生交流的方式进行教学,极大地丰富了学生学习的资源,同时又使学生感受到数学来源于生活,又服务于生活。
2.注重操作活动与数学思考相结合。
鉴于学生思维发展的规律和《数学课程标准》的要求,要使学生认识、理解图形的运动这样抽象的概念,必须结合现实生活的实例帮助学生认识、理解轴对称图形以及图形的平移和旋转,同时要注重操作与思考相结合。为了使学生获得充分的感性经验,本设计让学生在玩一玩、折一折、画一画、剪一剪的活动中理解轴对称图形,认识图形的平移及旋转现象;在学一学中感受其特征;在说一说中列举生活中的轴对称、平移和旋转现象;在做一做中不断深化体验。同时通过有效地提问做引导,便于在操作活动中落实教学目标。
课前准备
教师准备PPT课件
学生准备长方形的纸剪刀
教学过程
⊙创设情境,引入新知
1.引入:同学们,生活中有很多有趣的现象,只要你们有一双善于发现的眼睛,就能从中发现许多的知识。(课件出示教材28页主题图)请同学们仔细观察,你们能从图中发现哪些有趣的现象?(学生观察,自由回答)
2.过渡:是啊,在游乐场里,空中飞舞着的蜻蜓风筝和蝴蝶风筝多漂亮呀!仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴涵着这节课我们要学习的内容。下面就让我们一起走进数学王国,去探索有趣的数学知识吧!
设计意图:以学生熟悉的游乐场情境引入本节课的学习内容,使学生感受到数学与生活的密切联系。通过观察并说一说有效地打开了学生的知识储备,使学生尽快地进入到学习状态。
⊙探索交流,解决问题
(一)认真观察,体验对称。
1.观察图形,发现特点,认识对称现象。
(1)课件出示教材29页树叶、蝴蝶、城门图片。引导学生从形状、花纹、大小等方面进行观察。边观察边思考:这些图形有什么特点?
(2)组织学生交流汇报自己的发现。
预设
生1:树叶以中间叶脉的直线为界,左右两边的形状和大小都是相同的。
生2:蝴蝶以中间的直线为界,左右两边的形状和大小都是相同的。
生3:城门图片以中间的直线为界,左右两边的形状和大小都是相同的。
(3)根据同学们的汇报,组织学生讨论:这些图形的共同特点是什么?
这些图形左右两边的形状和大小完全相同,也就是说如果沿图形中间所在的直线对折,折痕左右两边能够完全重合。
(4)理解“对称”的含义。
像图中的树叶、蝴蝶、城门这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。
2.列举生活中的对称现象。
(1)生活中的对称现象还有很多,谁能举例说说?
(2)欣赏对称图形。(课件出示:五角星、京剧脸谱、蜻蜓、雪花、剪纸等等)
(二)动手操作,认识轴对称图形。
1.课件出示教材29页例1,请同学们拿出课前准备的长方形纸,运用对称的知识,跟老师一起剪一件衣服。(同步完成课堂活动卡)
(1)折一折:把这张长方形纸对折。
(2)画一画:在对折后的纸上画线。
(3)剪一剪:沿着刚才画的线剪一剪,剪后展开,会得到一件上衣的图形。
2.剪其他图形。
(1)选择松树、桃心、葫芦三种图形中的一种,自己动手剪一剪。
(2)学生操作,集体评价。
八年级上册数学教案简单篇15
一、函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接
二、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果
2、一次函数的图像
所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:
一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。(如下图)
4.正比例函数的性质
一般地,正比例函数y=kx有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k。确定一个一次函数,需要确定一次函数定义式y=kx+b(k≠0)中的常数k和b。解这类问题的一般方法是待定系数法。
图像分析:
k>0,b>0,图像经过一、二、三象限,y随x的增大而增大。
k>0,b<0,图像经过一、三、四象限,y随x的增大而增大。
k<0,b>0,图像经过一、二、四象限,y随x的增大而减小
k<0,b<0,图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。