教案吧 > 初中教案 > 八年级教案 >

八年级数学教案上册

时间: 新华 八年级教案

编写教案可以帮助教师明确教学目标、教学内容和教学步骤,更好地规划教学流程,提高教学效率。这里分享一些八年级数学教案上册下载,供大家写八年级数学教案上册参考。

八年级数学教案上册篇1

一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、2=得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后是通过4个例题介绍了利用根与系数的关系简化一些计算的知识。例如,求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等等。

根与系数的关系也称为韦达定理(韦达是法国数学家)。韦达定理是初中代数中的一个重要定理。这是因为通过韦达定理的学习,把一元二次方程的研究推向了高级阶段,运用韦达定理可以进一步研究数学中的许多问题,如二次三项式的因式分解,解二元二次方程组;韦达定理对后面函数的学习研究也是作用非凡。

通过近些年的中考数学试卷的分析可以得出:韦达定理及其应用是各地市中考数学命题的热点之一。出现的题型有选择题、填空题和解答题,有的将其与三角函数、几何、二次函数等内容综合起来,形成难度系数较大的压轴题。

通过韦达定理的教学,可以培养学生的创新意识、创新精神和综合分析数学问题的能力,也为学生今后学习方程理论打下基础。

(二)重点、难点

一元二次方程根与系数的关系是重点,让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。

(三)教学目标

1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。

八年级数学教案上册篇2

一、教材分析教材的地位和作用:

本节内容是第一课时《轴对称》,本节立足于学生已有的生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时本节内容与图形的.三种变换操作(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,使学生从对图形的感性认识上升到对轴对称的理性认识,为进一步学习轴对称性质及后面学习等腰三角形和圆等有关知识奠定基础。同时这一节也是联系数学与生活的桥梁。

二、学情分析

八年级学生有一定的知识水平,已经初步形成了一定观察能力、语言表达能力,这节课是在学生学习了“全等三角形”相关内容之后安排的一节课,学生已经具备了一定的推理能力,因此,这节课通过观察生活中的实例和动手实践,让学生自己去发现和总结轴对称图形和轴对称的概念及它们之间的区别与联系是切实可行的。

三、教学目标及重点、难点的确定

根据新课程标准、教材内容特点、和学生已有的认知结构、心理特征,我确定本节教学目标、重点、难点如下:

(一)教学目标:

1、知识技能

(1)理解并掌握轴对称图形的概念,对称轴;能准确判断哪些事物是轴对称图形;找出轴对称图形的对称轴.

(2)理解并掌握轴对称的概念,对称轴;了解对称点.

(3)了解轴对称图形和轴对称的联系与区别.

2、过程与方法目标

经历“观察——比较——操作——概括——总结一应用”的学习过程,培养学生的动手实践能力、抽象思维和语言表达能力.

3、情感、态度与价值观

通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,培养学生的学习兴趣,热爱生活的情感和欣赏图形的对称美。

(二)教学重点:轴对称图形和轴对称的有关概念.

(三)教学难点:轴对称图形与轴对称的联系、区别

.四、教法和学法设计

本节课根据教材内容的特点和八年级学生的知识结构和心理特征。我选择的:

【教法策略】采用以直观演示法和实验发现法为主,设疑诱导法为辅。教学中教学中通过丰富的图片展示,创设出问题情景,诱导学生思考、操作,教师适时地演示,并运用多媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,使不同层次学生的知识水平得到恰当的发展和提高。

【学法策略】:让学生在“观察----比较——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【辅助策略】我利用多媒体课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率

五、说程序设计:

新的课程标准指出学生的学习内容应该是现实的有意义的,有利于学生进行观察、试验、猜测、验证、推理与交流等数学活动。为了达到预期的教学目标,我对整个教学过程进行了设计。

(一)、观图激趣、设疑导入。

出示图片,设计故事。一日,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。你能说出为什么长得象吗?今天我们就来共同探讨这一问题――轴对称。

[设计意图]以兴趣为先导,创设学生喜闻乐见的故事情景,激发了学生浓厚的学习兴趣,

(二)、实践探索、感悟特征.

《活动一(课件演示)观察这些图形有什么特点?》在这个环节中我首先出示一组常见的具有代表性的典型的轴对称图形,出示后先让学生自己观察,并引导学生感知,无论是随风起舞的风筝,凌空翱翔的飞机,还是古今中外各式风格的典型建筑很多图形都给我们以美得感受。然后,教师适时提出问题:这些图形有什么共同特征?是如何对称?怎样才能使对称?部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。从而引出轴对称图形和对称轴的概念。在得出概念之后再引导学生例举生活中的事例。以便加深对轴对称图形概念的理解。

为了进一步认识轴对称图形的特点又出示了一组练习

(练习1)这是一组常见几何图形,要求学生判断是否是对称图形,若是对称图形的,画出它的对称轴

[设计意图]通过这个练习题不仅让学生巩固了轴对称图形的概念,而且让学生认识到我们常见的图形,有些是轴对称图形,有些不是轴对称图形。并且还让学生认识轴对称图形的对称轴不仅仅只一条,有可能有2条、3条、4条甚至无数条,对称轴的方向不仅仅是垂直的,有可能是水平的或倾斜的。

(练习2)国家的一个象征,观察下面的国旗,哪些是轴对称图形?试找出它们的对称轴。次题进一步巩固了轴对称图形的概念,培养了学生的观察能力、想象能力,同时通过展示各国的国旗,不仅激发了学生的学习兴趣,而且也拓展了学生的知识面。

(三)、动手操作、再度探索新知。

将一张纸对折,用笔尖扎出一个图案,然后将纸展开后,铺平,观察各自得到的图案与轴对称图形的不同。教学中注重学生活动,鼓励学生亲自实践,积极思考,在乐学的氛围中,培养学生的动手能力,从而引出轴对称概念。

再次引导学生讨论、归纳得出轴对称的概念……。之后再结合动画演示加深对轴对称概念的理解,进而引出对称轴、对称点的概念.并结合图形加以认识。

(四)、巩固练习、升华新知。

出示几幅图形,请同学们辨别哪幅图形是轴对称图形哪些图形轴对称,

在这组练习中让学生动手、动口、动眼、动脑,充分调动了学生的各种感官参与学习,既加深了对两个概念的理解,又锻炼了同学的各方面能力。完成这组练习题后让学生,归纳轴对称图形及轴对称区别与联系,先让学生自己归纳,然后用多媒体展示。

(课件演示)轴对称图形及两个图形成轴对称区别与联系

(五)、综合练习、发展思维。

1、抢答;观察周围哪些事物的形状是轴对称图形。

2、判断:

生活中不仅有些物体的形状是轴对称图形,我们所学的数字、字母和汉字中也有一些可以看成轴对称图形。

(1)下面的数字或字母,哪些是轴对称图形?它们各有几条对称轴?

0123456789ABCDEFGH

3、像这样写法的汉字哪些是轴对称图形?

口工用中由日直水清甲

(这几道题的练习做到了知识性、技能性、思想性和艺术性溶为一体。这样设计,不但活跃了课堂气氛,又检查了学生掌握新知的情况,而且激发了学生的学习兴趣,又让学生感到数学就在自己的身边)

(六)归纳小结、布置作业

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。作业布置要有层次,照顾学生个体差异使不同的人在数学上获得不同的发展!

六、设计说明

这节课,我依据课程标准、教材特点、遵循学生的认知规律。通过六个环节的教学设计,通过观察生活中的一些图案以及动画演示,由感性到理性,让学生轻松掌握了轴对称图形与关于直线成轴对称两个概念,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑,使学生学有兴趣、学有所获。这就是我对本节课的理解和说明。

八年级数学教案上册篇3

一、教学目的

1、认识大面额的人民币,并能进行换算。

2、会用大面额人民币付钱,体会付钱方式的多样化。

3、感受大面额人民币在生活中的作用,初步培养学生勤俭意识。

二、教学准备

教师准备:不同面值大面额人民币,教学软件,学生学习材料。

学生准备:各种面额的人民币学具。

三、教学过程

(一)、复习引入

教师:昨天,我们去人民币王国里做客,在那里我们认识了人民币,人民币是用什么做单位的呢?

学生:人民币的单位是元、角、分。

(教师根据学生的回答贴出元、角、分三个单位)

教师:你能说说人民币之间有什么最重要的互换关系吗?

学生:1元=10角,1角=10分。

(教师板书此关系式)

教师:今天,我又给孩子们带来一些用元作单位的人民币大朋友,他们的名字叫做大面额人民币。他们也想跟孩子们一起玩儿,你们愿意和他们交朋友吗?

(教师出示课题:大面额人民币)

教师:他们就在我们数学书里第73页上等着你们呢!快去找一找他们吧!

[设计意图:教师通过复习,由小面额人民币引出大面额人民币,为学生构建完整的知识结构提供框架,使新旧知识很好的联系起来。同时,也为学生学习大面额人民币之间的关系提供知识迁移的.基点。]

(二)、认识大面额人民币

1、教师:孩子们见过他们吗?在哪儿见过?

学生1:我在超市里见过。

学生2:我在老师收学费的时候见过。

学生3:我在商场里见过。

2、教师:用过他们吗?什么时候用过?

学生1:开学交学费时我用过。

学生2:我和爸爸、妈妈去超市买东西付钱时,妈妈让我去付钱,那时用过。

3、教师:孩子们既然见过、用过这些新朋友,那你们一定也认识他们吧?下面就请你跟同桌的孩子相互介绍介绍新朋友吧!

教师:有谁愿意把新朋友介绍给全班的孩子听一听。

(学生上台用教师准备好的教具展示并板贴)

学生介绍认识人民币的方法;

4、教师:今天我们的新朋友们要去参加人民币王国里举行的一次化装舞会,他们想请你们帮他们检查检查他们化的装好不好,别人还能不能认出他们来。

(教师出示多媒体游戏内容)

游戏:教师出示遮住一部分颜色和图案但留有数字的人民币。

八年级数学教案上册篇4

教学目标:

1、使学生经历测量过程,知道毫米产生的实际意义。

2、通过观察,明确毫米与厘米的关系,会进行简单的换算。

3、使学生在操作中学会用毫米作单位进行测量。

4、使学生建立1毫米的长度观念。

教学过程:

一、情景导入

1、小组合作学习,估计课本的长、宽、厚。

(1)出示例1情境图,学生认真观察。教师提出问题。

(2)4人小组合作,分别估计一下数学课本的长、宽、厚。将估计的结果填在记录表的“估计”一栏中。

(3)对估计的结果进行反馈。

2、用测量的方法验证估计的结果。

(1)分组测量课本的长、宽和厚。测量时,将遇到的问题记录下来,用自己喜欢的方法表示测量的结果。

(2)交流测量的结果,引出毫米。板书课题“毫米的认识”。

二、探究体验

1、了解毫米与厘米的关系。

(1)提问:“从尺中,你发现毫米与其他单位间的关系吗?”

(2)学生观察并独立思考后回答问题。从而引出1厘米=10毫米的关系。让学生多说发现这个关系的过程。

2、帮助学生建立1毫米的长度观念。

(1)在尺上观察1毫米的长度,互相比划一下1毫米的长度。

(2)教师提出问题:“请大家说出生活中长或宽或厚大约是1毫米的东西。”先在组内说,再在全班交流。

(3)要求学生合作完成:先从课本中数出几页(捏紧后的`厚度大约是1毫米),再用尺子验证一下是不是1毫米,然后调整到厚度是1毫米,最后数一数看有多少张。

三、实践应用

1、生独立完成“做一做”,再在小组内说出填写的结果。

2、生说一说,在生活中测量哪些物品一般用“毫米”作单位。

3、师生共同小结:当测量长度的结果不是整厘米数时,可以用毫米来表示;1厘米=10毫米;1分硬币、电话卡、储蓄卡、医疗保险卡等的厚度大约都是1毫米……

四、课堂练习

1、练习一第1题。安排学生在书上完成,练习时要求学生先估测,后判断,再用尺子进行测量验证。

2、练习一第2题。要求学生完成在作业本上。

3、练习一第3题。先让学生估计实物的长(或宽),再用尺子进行测量。完成后,让学生对估计和测量的结果进行对比。

五、全课总结

1、通过今天的学习,你学到了什么新知识?

2、师总结。

八年级数学教案上册篇5

教学目标:

1.知道负整数指数幂=(a≠0,n是正整数).

2.掌握整数指数幂的运算性质.

3.会用科学计数法表示小于1的数.

教学重点:

掌握整数指数幂的运算性质.

难点:

会用科学计数法表示小于1的数.

情感态度与价值观:

通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

教学过程:

一、课堂引入

1.回忆正整数指数幂的运算性质:

(1)同底数的幂的乘法:am?an=am+n(m,n是正整数);

(2)幂的乘方:(am)n=amn(m,n是正整数);

(3)积的乘方:(ab)n=anbn(n是正整数);

(4)同底数的幂的除法:am÷an=am?n(a≠0,m,n是正整数,m>n);

(5)商的乘方:()n=(n是正整数);

2.回忆0指数幂的规定,即当a≠0时,a0=1.

3.你还记得1纳米=10?9米,即1纳米=米吗?

4.计算当a≠0时,a3÷a5===,另一方面,如果把正整数指数幂的运算性质am÷an=am?n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立.事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an=am+n(m,n是整数)这条性质也是成立的.

三、科学记数法:

我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0.000012=1.2×10?5.即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数.启发学生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此发现其中的规律,从而有0.0000000012=1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

八年级数学教案上册篇6

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1.教师通过课件出2个分式混合运算的小练习.

2.总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3.作业:

a)教科书习题16.2第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

八年级数学教案上册篇7

教材分析

本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

学情分析

本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

教学目标

1、知识与技能:

掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。

2、过程与方法:

(1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的运用,进一步发展演绎推理能力;

(2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

3、情感态度与价值观:

(1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

(2)通过性质的推导体会“特殊。

八年级数学教案上册篇8

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习:平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案上册篇9

教学目标:

1.巩固对人民币知识的认识;

2.提高100以内加、减运算的技能;

3.加深对加减法数量关系的理解;

4.培养学生收集信息、分类整理等数学意识。

教学步骤:

1.模拟“百货店”一角,巧设购物环境。

教师把毛巾、肥皂、牙膏、巧克力、奶糖、钢笔、铅笔、书包、练习本等商品放置在桌面上,每件商品的旁边都放上由学生制作的价格标签,并挂上“欢迎到百货店购物”的`字样。上课前,让同学们看一看。

2.化静为动,吸引学生注意力,培养其观察能力。

首先,教师利用电教平台出示如下一组文具、日用品及其价格:

然后,利用多媒体辅助教学,播放“百货店”的欢迎语,同时出示题目:小勇高高兴兴地拿着10元钱到“百货店”购物,假如你是小勇,你能用10元钱买到哪些文具或日用品?

3.让学生独立思考、小组讨论。

学生对教师提出的问题,经过各自独立思考后,纷纷举手作答:

生1:用10元钱可以买到1支钢笔、1支圆珠笔和1盒巧克力。

生2:用10元钱可以买到2本练习本、1支圆珠笔和1盒奶糖。

生3:用1元钱可以买到4条毛巾和2块肥皂。

至此,教师不急于作出结论,而是让学生分组讨论。通过实践,培养了学生的`合作交流意识。

4.每组选派代表到“百货店”按各自需要自由选购。

经过各个小组的热烈讨论,每个小组拟定选购方案若干个,然后派代表按各自的购物方案到“百货店”选购文具或日用品。

5.巧设问题,激发热情,活跃课堂气氛。

教师在课堂上有意识地问购物代表:“你们拿10元钱选购到哪些文具呀?”“你们拿10元钱选购到哪些商品呀?”……各组代表积极地发言,整个课堂的学习气氛活跃起来了。

6.采用激励性评价,使学生从中体验到成功的喜悦。

教师为了使每个学生都有成功感,发挥同学们团结合作的精神,采取了学生自我评价、合作评价、教师评价等的激励性评价方式,巧用计算机辅助教学、巧选文具的活动、巧评合作得出的结果。这样,在教师的引导下,通过一系列口、脑、手并用和求异思维的激发,使学生懂得:用同样多的钱,可以按需要购物,按价格大小巧安排,做到合理消费。这对诱发学生的创新意识起到了重要的作用,进而培养了学生的合作交流意识,锻炼了学生的合作交流能力。

八年级数学教案上册篇10

1.答案:B

2.解析:∠α=30°+45°=75°

答案:D

3.解析:延长线段CD到M,根据对顶角相等可知∠CDF=∠EDM.又因为AB∥CD,所以根据两直线平行,同位角相等,可知∠EDM=∠EAB=45°,所以∠CDF=45°。

答案:B

4.解析:∵CD∥AB,∴∠EAB=∠2=80°。

∵∠1=∠E+∠EAB=120°,

∴∠E=40°,故选A。

答案:A

5.答案:B

6.答案:D

7.答案:D

8.答案:D

9.解析:根据四个选项的描述,画图如下,从而直接由图确定答案。

答案:①②④

10.答案:如果两个角是同一个角或相等角的余角,那么这两个角相等;

11.答案:40°

12.答案:112.5°

13.解:(1)如果一个四边形是正方形,那么它的四个角都是直角,是真命题;

(2)如果两个三角形有两组角对应相等,那么这两个三角形相似,是真命题;

(3)如果两条直线不相交,那么这两条直线互相平行,是假命题,如图中长方体的棱a,b所在的直线既不相交,也不平行。

14.解:平行,理由如下:∵∠ABC=∠ACB,

BD平分∠ABC,CE平分∠ACB,

∴∠DBC=∠ECB.∵∠DBF=∠F,

∴∠ECB=∠F.∴EC与DF平行。

15.证明:∵CE平分∠ACD(已知),

∴∠1=∠2(角平分线的定义)。

∵∠BAC>∠1(三角形的一个外角大于任何一个和它不相邻的内角),

∴∠BAC>∠2(等量代换).∵∠2>∠B(三角形的一个外角大于任何一个和它不相邻的内角),∴∠BAC>∠B(不等式的性质)。

16.证明:如图④,设AD与BE交于O点,CE与AD交于P点,则有∠EOP=∠B+∠D,∠OPE=∠A+∠C(三角形的外角等于和它不相邻的两个内角的和).∵∠EOP+∠OPE+∠E=180°(三角形的内角和为180°),∴∠A+∠B+∠C+∠D+∠E=180°。

如果点B移动到AC上(如图⑤)或AC的另一侧(如图⑥)时,∠EOP,∠OPE仍然分别是△BOD,△APC的外角,所以可与图④类似地证明,结论仍然成立。

八年级数学教案上册篇11

教学目标:

知识与技能目标:

1.掌握矩形的概念、性质和判别条件.

2.提高对矩形的性质和判别在实际生活中的应用能力.

过程与方法目标:

1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.

2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.

情感与态度目标:

1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.

教学重点:

矩形的性质和常用判别方法的理解和掌握.

教学难点:

矩形的性质和常用判别方法的综合应用.

教学方法:

分析启发法

教具准备:

像框,平行四边形框架教具,多媒体课件.

教学过程设计:

一.情境导入:

演示平行四边形活动框架,引入课题.

二.讲授新课:

1.归纳矩形的定义:

问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)

结论:有一个内角是直角的平行四边形是矩形.

八年级数学上册教案2.探究矩形的性质:

(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

结论:矩形的四个角都是直角.

(2).探索矩形对角线的性质:

让学生进行如下操作后,思考以下问题:(幻灯片展示)

在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

①.随着∠α的变化,两条对角线的长度分别是怎样变化的?

②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

(学生操作,思考、交流、归纳.)

结论:矩形的两条对角线相等.

(3).议一议:(展示问题,引导学生讨论解决.)

①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)

矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

例解:(性质的运用,渗透矩形对角线的“化归”功能.)

如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4

厘米.求BD与AD的长.

(引导学生分析、解答.)

探索矩形的判别条件:(由修理桌子引出)

(1).想一想:(学生讨论、交流、共同学习)

对角线相等的平行四边形是怎样的四边形?为什么?

结论:对角线相等的平行四边形是矩形.

(理由可由师生共同分析,然后用幻灯片展示完整过程.)

(2).归纳矩形的判别方法:(引导学生归纳)

有一个内角是直角的平行四边形是矩形.

对角线相等的平行四边形是矩形.

三.课堂练习:

(出示P98随堂练习题,学生思考、解答.)

四.新课小结:

通过本节课的学习,你有什么收获?

(师生共同从知识与思想方法两方面小结.)

五.作业设计:P99习题4.6第1、2、3题.

板书设计:

4.矩形

矩形的定义:

矩形的性质:

前面知识的小系统图示:

三.矩形的判别条件:

例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

八年级数学教案上册篇12

一、回顾交流,合作学习

【活动方略】

活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

【问题探究1】(投影显示)

飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

【活动方略】

教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

【问题探究2】(投影显示)

一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

【活动方略】

教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

学生活动:思考后,完成“问题探究2”,小结方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD为直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此这个零件符合要求.

【问题探究3】

甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

【活动方略】

教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

学生活动:课堂练习,与同伴交流或举手争取上台演示

八年级数学教案上册篇13

教学要求:

1、使学生进一步巩固笔算加、减法的方法,提高计算的正确率。

2、使学生进一步理解相差关系三类应用题的数量关系,掌握各类应用题的分析、解题的思路,能正确地解答三类不同的应用题,进一步培养分析、综合、推理、判断的能力。

教学过程:

一、计算练习

做练习十二第8题后两题(加和减)

1、指名两人板演,其余做在作业本上。

2、集体订正,让学生重点说一说计算过程。

3、提问:笔算加法和笔算减法有什么相同的地方?加法计算个位满十要怎么办?减法计算个位不够减怎么办?

二、应用题练习

1、看图列式

(1)示线段图。(用线段图分别表示蓝墨水28瓶,红墨水20瓶,求蓝墨水比红墨水多几瓶)

请小朋友说说图上是什么意思?

哪种墨水的瓶数多?怎样列式?为什么用减法算?28-20表示什么意思?这道题的问题还可以怎样提?为什么?

(2)在图上改变已知数和问题,成为求蓝墨水瓶数的题。

让学生说说现在图里的意思?怎样列式?为什么要用加法算?

(3)谁能改变和问题,成为求红墨水瓶数的题?(根据改变两个条件和问题)怎样列式?

2、针对性练习

现在,说说第一句中是哪种数量多,它可以分成哪两部分。

(1)小猴子比大猴子多几只?

(2)公鸡比母鸡少几只?

(3)松树比杨树少10棵。

(4)红金鱼比黄金鱼多5条。

师:我们分清了谁多、谁少,就可以根据题目的意思来分析数量关系,解答应用题。

3、完成练习十二第9题

先做第一题,做完后提问:这个问题还可以怎样提?

想一想,这道题里有哪三个数量?(张芳养17只,徐军养26只,徐军比张芳多养9只)

根据三个数量,还可以编成另外两道应用题。

做第(2)(3)题

做完后指出:虽然每道题里的三个数量都一样,但由于条件和问题不同,所以解答的.方法和算式也不一样。因此,解答应用题先要分清条件和问题,然后根据条件和问题的联系,确定用什么方法算。

4、做练习十二第10题

让学生说明题意,明确和绿旗面数都是与哪种旗比的。为什么解题的方法一样?

三、课堂作业

练习十二第8题前4道计算题,第11题、12题。

八年级数学教案上册篇14

教学建议

1、平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

注意事项:定理中的.平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

2、平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”。

推论的用途:(1)平分已知线段;(2)证明线段的倍分。

重难点分析

本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

教学设计示例

一、教学目标

1、使学生掌握平行线等分线段定理及推论。

2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

4、通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1、教学重点:平行线等分线段定理

2、教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1、什么叫平行线?平行线有什么性质。

2、什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

已知:如图,直线,。

求证:。

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论。

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得。

证明:过点作分别交、于点、,得和,如图。

∵,

又∵,,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

引导学生观察下图,在梯形中,,,则可得到,由此得出推论1。

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

再引导学生观察下图,在中,,,则可得到,由此得出推论2。

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

接下来讲如何利用平行线等分线段定理来任意等分一条线段。

例已知:如图,线段。

求作:线段的五等分点。

作法:①作射线。

②在射线上以任意长顺次截取。

③连结。

④过点。、、分别作的平行线、、、,分别交于点、、、。

、、、就是所求的五等分点。

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)平行线等分线段定理及推论。

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

(4)应用定理任意等分一条线段。

八、布置作业

教材P188中A组2、9

九、板书设计

十、随堂练习

教材P182中1、2

八年级数学教案上册篇15

一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算:(a-b)=

方法一:方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3-a)2、(2a-1)3、(3y-x)

4、(2x–4y)5、(3a-)

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999)2、(a–b–c)

3、(a+1)-(a-1)

(四)达标训练

1、、选择:下列各式中,与(a-2b)一定相等的是()

A、a-2ab+4bB、a-4b

C、a+4bD、a-4ab+4b

2、填空:

(1)9x++16y=(4y-3x)

(2)()=m-8m+16

2、计算:

(a-b)(x-2y)

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a–b=1,a+b=25,求ab的值

31673