初二教案数学教案
优秀的教案可以帮助教师更好地完成教学任务,提高教学效果,提升学生的学习能力和兴趣。优秀的初二教案数学教案应该是怎样的?快来学习初二教案数学教案的撰写技巧,跟着小编一起来参考!
初二教案数学教案篇1
教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三)重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一)引入课题环节:
1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、通过投影仪给出以下算式:
减法加法
(+10)-(+3)=+7(+10)+(-3)=+7
让学生比较上面这两个算式并讨论后得出:
(+10)-(+3)=(+10)+(-3)
再给出以下算式:
减法加法
(+5)-(+2)=+3(+5)+(-2)=+3
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)
从而,它启发我们有理数的减法可以转化成加法进行
2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数
字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,
实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号
(减法============加法)
3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15℃比5℃高多少?15℃比-5℃高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例1.计算:(1)(-3)-(-5);(2)0-7
例2.计算(1)7.2-(-4.8);(2)(-3-)-5
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三)巩固练习环节:
让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(四)课堂小结环节:(师生共同完成)
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)
(五)布置课后作业:课本p83习题2.6的2、3、4、5的偶数题
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
初二教案数学教案篇2
一、教学目标:
1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:
理解中心对称图形的概念及其基本性质。
三、教学过程:
(一)创设问题情境
1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
(课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)
师重复以上活动
2次后提问:
(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?
(2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)
(反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(
3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转
180O后和原来牌面一样。
3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:
(1)只有一张扑克牌图案颠倒后和原来牌面一样。
(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。
(反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)
(二)学生分组讨论、思考探究:
1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?
生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。
2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“
Z+Z”演示其旋转过程。)3
.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?
(对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)
(三)教师明晰,建立模型
1给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2.对比轴对称图形与中心对称图形:(列出表格,加深印象)
轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O对折后与原图形重合
旋转后与原图形重合
(四)解释、应用与拓广
1.教师用“Z+Z
智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。
(利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)
2.探究中心对称图形的性质
板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.师问:怎样找出一个中心对称图形的对称中心?
(两组对应点连结所成线段的交点)
4平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?
学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?
5逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?
学生讨论回答。
6你还能找出哪些多边形是中心对称图形?
(反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)
(五)拓展与延伸
1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?
2.正六边形的对称中心怎样确定?
(六)魔术表演:
1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?
2.学生小组活动:
以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。
(新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)
四、案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。
初二教案数学教案篇3
教学目标
1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引导学生体会“降次”化归的思路。
重点难点
重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。
教学过程
(一)复习引入
1、判断下列说法是否正确
(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();
(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();
(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),
若(x+3)(x-6)=0,则x+3=0或x-6=0();
(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),
若(x+3)(x-6)=1,则x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;
若x2=2,则x=。
答案:平方根,±,±2,±。
(二)创设情境
前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?
引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
给出1.1节问题一中的方程:(35-2x)2-900=0。
问:怎样将这个方程“降次”为一元一次方程?
(三)探究新知
让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。
(四)讲解例题
展示课本P.7例1,例2。
按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。
引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。
因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。
直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;
(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。
(五)应用新知
课本P.8,练习。
(六)课堂小结
1、解一元二次方程的基本思路是什么?
2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?
3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?
(七)思考与拓展
不解方程,你能说出下列方程根的情况吗?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根
通过解答这个问题,使学生明确一元二次方程的解有三种情况。
布置作业
初二教案数学教案篇4
教学
目标1联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。
2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。
重点
难点理解轴对称图形的基本特征
教具
准备剪刀、纸(含平行四边形、字母NS)、教学挂图、直尺
教学
方法
手段观察、比较、讨论、动手操作
教学
过程一.新课
1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?
2.出示教学挂图:_、飞机、奖杯的实物图片
将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?
生:对折后两边能完全重合。
师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
教师先示范,让学生认识_城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。
3.练习:(出示小黑板)
(1)P57“试一试”
判断哪几个图形是轴对称图形?试着画出对称轴。
估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。
(2)用剪刀和纸剪一个轴对称图形。
初二教案数学教案篇5
一、创设情境 导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索 建立模型
(一)认一认 形成表象
师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?
不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)
(二)找一找 感知特征
1、在例题图中找平行四边形
师:老师这有几幅图,你能在这上面找到平行四边形吗?
2、寻找生活中的平行四边形
师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)
(三)做一做 探究特征
1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】
(四)练一练 巩固表象
完成想想做做第1、2题
(五)画一画 认识高、底
1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。
3、平行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作 巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。
2、完成想想做做第6题 (课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?
(3)得出平行四边形的特性
师再捏住平行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获 拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找平行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
初二教案数学教案篇6
一、读一读
学习目标:1、掌握“三角形内角和定理”的证明及其简单应用;
2、体会思维实验和符号化的理性作用
二、试一试
自学指导:
1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里和定理,你能进行论证么?
2、已知:如右图所示,△ABC
求证:∠A+∠B+∠C=180°
思考:延长BC到D,过点C作射线CE∥BA,这样就相
当于把∠A移到了的位置,把∠B移到的位置。
注意:这里的CD,CE称为辅助线,辅助线通常画成虚线
证明:作BC的延长线CD,过点C作射线CE∥BA,则:
3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!
三、练一练
1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。
2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC
求证:∠ADE=50°
3、如图,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=25°,求∠BDE的大小。
4、证明:四边形的内角和等于360°
初二教案数学教案篇7
第三十四学时:14.2.1平方差公式
一、学习目标:
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)20__×1999(2)998×1002
导入新课:计算下列多项式的积.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的&39;和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
初二教案数学教案篇8
教学目标:
1.知道换算关系
2.会写数读数
巩固数感
教学重难点:会写数读数
教学过程:
1、我们学过了计数器上从右向左依次是:个位、十位、百位、千位、万位。其中位是万位、最低位是个位。
2、10个1是10,10个10是100,10个100是1000,10个1000是10000。
3、你还能用自己的话说说吗?
4、数一数
10个10个的数,从2630数到3480
100个100个的数,从8300数到10000。
1000个1000个的数,从1000数到10000。
5、读数
8267932792072003900010000368083007048
读数的时候应该注意什么?
6、写数
一万一千一千九百三千零五十千零九两千一百零八
六千零一十四千零五十八
7、2046420614261562
这四个数中的2有什么不同?
8、一个数千位上是6,百位上是5,十位上是6,这个数是(),读作()。
一个数千位上是5,百位上是7,个位上是8,这个数是(),读作()
一个数个位上是6,百位上是5,十位上是6,这个数是(),读作()
一个数有5个千,6个百,6个十,这个数是()
一个数有6个千,3个1,这个数是()
一个数有10个1000,这个数是()
一个一个的数,跟1000相邻的两个数是()()
十个十个的数,跟1000相邻的两个数是()()
一百个一百个的数,跟1000相邻的两个数是()()
500和900比,()离600更近。
板书设计:各练习题
课后小结:
初二教案数学教案篇9
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重 点: 理解添括号法则,进一步熟悉乘法公式的合理利用
难 点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
初二教案数学教案篇10
教学目标:
1、通过操作活动,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。
1、通过观察、操作,使学生初步感知所学图形之间的关系。
3、能根据要求自己操作学具。
4、培养学生团结协作的精神。
教学重难点:
平面图形之间的关系。
教具、学具准备:教师:各种平面图形的图片;学生:学具袋中的平面图形。
教学过程:
一、基础训练。
20以内退位减法的练习。(20题,学生独立在练习纸上完成,电脑计时2分钟。)
二、情景引入。
小朋友们,老师今天要领你们去图形王国参观学习,你们想去吗?
三、探究交流,获取新知。
1、引旧入新,初步感知长方形和正方形的特征。
(1)出示图形王国的向导,引出所学过的图形,学生认一认。
(2)先后出示长短不同的5条线段,让学生选其中的4条分别拼成一个长方形并说说选择它们的理由。
在学生说出理由的同时讲解“对边”的含义。
2、动手操作,具体感知长方形和正方形的特征
(1)设难:你如何证明长方形的对边一样长呢?
先让学生自由说说自己的方法,之后再让学生看书第27面例1中的对折方法,引导学生对折证明。
(2)老师小结并板书:长方形的对边相等。
(3)引导学生通过动手折叠证明正方形的四条边一样长。
(4)老师小结并板书:正方形的四条边都相等。
3、动手拼图,感知平面图形之间的关系。
(1)用两个同样的长方形拼一拼,你能拼成什么图形?
学生先动手拼,再分别展示学生的作品。
(2)教师提出要求:用四个大小相同的正方形你可以拼成什么图形呢。
先让学生动手拼,再分别展示学生的图形。
(3)用四个三角形可能拼出什么图形?
把拼法不同的图案展示出来,并加以表扬肯定。
4、课中操:《小手拍拍》
5、平面图形之间的相互转换。
(1)正方形转换成三角形。
(2)长方形转换成正方形。
(3)圆形转换成正方形。
四、应用知识,体验成功。
1、说出图中是用哪些图形拼出来的。
2、出示两个大小不同的长方形,问:它们能否拼成一个正方形呢?为什么?
3、生活中的拼图。
出示几组生活中的图案,让学生感受图形拼组的实用、美观,激发学习兴趣。
五、质疑问难
长方形和正方形有什么不同?
六、小结本课内容。
1、小朋友们,今天我们一起学习了什么内容?
2、谈一谈你的收获。
初二教案数学教案篇11
回顾与思考
一、学生起点分析
学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。
学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。
二、学习任务分析
本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课的教学目标是:
1.知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。
2.过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。
3.情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。
三、教学过程设计
本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:归纳知识结构
内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?
留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:
目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。
注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。
第二环节:回顾重点内容[
内容:引导学生根据网络结构图,把重点知识内容再回顾一下:
1.平均数、中位数、众数的概念及举例
一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。新$课$标$第$一$网
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两
个数据的平均数)叫做这组数据的中位数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
2.平均数、中位数、众数的特征
(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。
3.算术平均数和加权平均数的联系与区别及举例
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4.加权平均数中权的差异对平均数的影响及举例
在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。
5.利用计算器求一组数据的平均数
目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。
注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛;一个能用数学思维思考世界的头脑。
第三环节:综合运用提高
内容:1.从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):
400.0400.3401.2398.9399.8
399.8400.0400.5399.7399.8
利用计算器求出这10个零件的平均质量。
2.某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
3.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售量,统计了这15人某月的销售量如下:
每人销售件数1800510250210150w120
人数113532[
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。
4.下图反映了甲、乙两班学生的体育成绩。
(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?
(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?
(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?
(4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?
目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。
注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。
对本章知识技能的评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。
第四环节:课堂小结
内容:1.本章知识结构和重点内容。
2.综合运用统计知识解决实际问题。
3.整理归纳知识的方法,勤于思考、善于总结的好习惯。
目的:围绕本节课的教学目标,进行知识、方法、能力、习惯全方位的小结,目的是为了学生的全面发展。
注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。
第五环节:布置作业
1.课本本章复习题。
2.在数学成长本上进行本章的小结与反思。
四、教学反思
1.华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。
2.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。
3.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。
初二教案数学教案篇12
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式.
难点:将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2(1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b)(2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9m2-4n2
=(3m)2-(2n)2
=(3m+2n)(3m-2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2;(2)9a2-b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2;(2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)•(a2-1).
五、课堂练习教科书练习
六、作业1、教科书习题
2、分解因式:x4-16x3-4x4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y