教案吧 > 初中教案 > 八年级教案 >

初二数学1000字教案

时间: 新华 八年级教案

好的教案应该突出学生的主体地位,培养学生的思维能力和创造力,提高学生的综合素质。写好初二数学1000字教案要注意什么?小编给大家分享初二数学1000字教案,希望对大家有所帮助。

初二数学1000字教案篇1

新课指南

1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

教材解读精华要义

数学与生活

如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

知识详解

知识点1代数式

用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

例如:5,a,(a+b),ab,a2-2ab+b2等等.

知识点2列代数式时应该注意的问题

(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

(2)数字通常写在字母前面.

如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

(3)带分数与字母相乘时要化成假分数.

如:2×ab=ab,切勿错误写成“2ab”.

(4)除法常写成分数的形式.

如:S÷x=.

初二数学1000字教案篇2

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

初二数学1000字教案篇3

教学目标

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程

(一)复习引入

1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境

现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

怎样解这类方程:2x2-4x-6=0

(三)探究新知

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题

1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知

课本P.15,练习。

(六)课堂小结

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解

一元二次方程的算法。

(七)思考与拓展

不解方程,只通过配方判定下列方程解的

情况。

(1)4x2+4x+1=0;(2)x2-2x-5=0;

(3)–x2+2x-5=0;

[解]把各方程分别配方得

(1)(x+)2=0;

(2)(x-1)2=6;

(3)(x-1)2=-4

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

初二数学1000字教案篇4

考标要求:

1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;

2会用因式分解法解某些一元二次方程。

重点:用因式分解法解一元二次方程。

难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。

一填空题(每小题5分,共25分)

1解方程(2+x)(x-3)=0,就相当于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:

(1)解方程:,小明的解法是:解:两边同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正确的是()

A小明B小亮C都正确D都不正确

3下面方程不适合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空题(每小题5分,共25分)

6方程(1+)-(1-)x=0解是=_____,=__________

7当x=__________时,分式值为零。

8若代数式与代数式4(x-3)的值相等,则x=_________________

9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=_______.

10如果,则关于x的一元二次方程a+bx=0的解是_________

三解答题(每小题10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?

14解方程:-2+1=0

15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。

如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面

初二数学1000字教案篇5

教学目标:

1、通过操作活动,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。

1、通过观察、操作,使学生初步感知所学图形之间的关系。

3、能根据要求自己操作学具。

4、培养学生团结协作的精神。

教学重难点:

平面图形之间的关系。

教具、学具准备:教师:各种平面图形的图片;学生:学具袋中的平面图形。

教学过程:

一、基础训练。

20以内退位减法的练习。(20题,学生独立在练习纸上完成,电脑计时2分钟。)

二、情景引入。

小朋友们,老师今天要领你们去图形王国参观学习,你们想去吗?

三、探究交流,获取新知。

1、引旧入新,初步感知长方形和正方形的特征。

(1)出示图形王国的向导,引出所学过的图形,学生认一认。

(2)先后出示长短不同的5条线段,让学生选其中的4条分别拼成一个长方形并说说选择它们的理由。

在学生说出理由的同时讲解“对边”的含义。

2、动手操作,具体感知长方形和正方形的特征

(1)设难:你如何证明长方形的对边一样长呢?

先让学生自由说说自己的方法,之后再让学生看书第27面例1中的对折方法,引导学生对折证明。

(2)老师小结并板书:长方形的对边相等。

(3)引导学生通过动手折叠证明正方形的四条边一样长。

(4)老师小结并板书:正方形的四条边都相等。

3、动手拼图,感知平面图形之间的关系。

(1)用两个同样的长方形拼一拼,你能拼成什么图形?

学生先动手拼,再分别展示学生的作品。

(2)教师提出要求:用四个大小相同的正方形你可以拼成什么图形呢。

先让学生动手拼,再分别展示学生的图形。

(3)用四个三角形可能拼出什么图形?

把拼法不同的图案展示出来,并加以表扬肯定。

4、课中操:《小手拍拍》

5、平面图形之间的相互转换。

(1)正方形转换成三角形。

(2)长方形转换成正方形。

(3)圆形转换成正方形。

四、应用知识,体验成功。

1、说出图中是用哪些图形拼出来的。

2、出示两个大小不同的长方形,问:它们能否拼成一个正方形呢?为什么?

3、生活中的拼图。

出示几组生活中的图案,让学生感受图形拼组的实用、美观,激发学习兴趣。

五、质疑问难

长方形和正方形有什么不同?

六、小结本课内容。

1、小朋友们,今天我们一起学习了什么内容?

2、谈一谈你的收获。

初二数学1000字教案篇6

教学目标:

1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

4、能利和计算器求一组数据的算术平均数。

教学重点:

体会平均数、中位数、众数在具体情境中的意义和应用。

教学难点:

对于平均数、中位数、众数在不同情境中的应用。

教学方法:

归纳教学法。

教学过程:

一、知识回顾与思考

1、平均数、中位数、众数的概念及举例。

一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的.算术平均数,简称平均数。

如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

众数就是一组数据中出现次数最多的那个数据。

如3,2,3,5,3,4中3是众数。

2、平均数、中位数和众数的特征:

(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

3、算术平均数和加权平均数有什么区别和联系:

算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

4、利用计算器求一组数据的平均数。

利用科学计算器求平均数的方法计算平均数。

二、例题讲解:

某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

三、课堂练习:

复习题A组

四、小结:

1、掌握平均数、中位数与众数的概念及计算。

2、理解算术平均数与加权平均数的联系与区别。

五、作业:

复习题B组、C组(选做)

初二数学1000字教案篇7

一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式

二、重点难点

重点:能观察出多项式的公因式,并根据分配律把公因式提出来

难点:让学生识别多项式的公因式.

三、合作学习:

公因式与提公因式法分解因式的概念.

三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练

例1、将下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.

首先找各项系数的____________________,如8和12的公约数是4.

其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.

课堂练习

1.写出下列多项式各项的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

五、小结:

总结出找公因式的一般步骤.:

首先找各项系数的大公约数,

其次找各项中含有的相同的字母,相同字母的指数取次数最小的.

注意:(a-b)2=(b-a)2

六、作业1、教科书习题

2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

初二数学1000字教案篇8

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

矩形性质定理1:矩形的四个角都是直角.

矩形性质定理2:矩形对角线相等.

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半.

(这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1已知如图1矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如图.

(2)矩形性质.

1.具有平行四边形的所有性质.

2.特有性质:四个角都是直角,对角线相等.

3.思考题:已知如图,是矩形对角线交点,平分,,求的度数

八、布置作业

教材P158中2、5,P195中7.

九、板书设计

十、随堂练习

教材P146中1、2、3、4

初二数学1000字教案篇9

学习重点:函数的概念及确定自变量的取值范围。

学习难点:认识函数,领会函数的意义。

【自主复习知识准备】

请你举出生活中含有两个变量的变化过程,说明其中的常量和变量。

【自主探究知识应用】

请看书72——74页内容,完成下列问题:

1、思考书中第72页的问题,归纳出变量之间的关系。

2、完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。

3、归纳出函数的定义,明确函数定义中必须要满足的条件。

归纳:一般的,在一个变化过程中,如果有______变量x和y,并且对于x的_______,y都有_________与其对应,那么我们就说x是__________,y是x的________。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

补充小结:

(1)函数的定义:

(2)必须是一个变化过程;

(3)两个变量;其中一个变量每取一个值,另一个变量有且有唯一值对它对应。

三、巩固与拓展:

例1:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。

(1)写出表示y与x的函数关系式.

(2)指出自变量x的取值范围.

(3)汽车行驶200千米时,油箱中还有多少汽油?

【当堂检测知识升华】

1、判断下列变量之间是不是函数关系:

(1)长方形的宽一定时,其长与面积;

(2)等腰三角形的底边长与面积;

(3)某人的年龄与身高;

2、写出下列函数的解析式.

(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底面边长为x(cm),写出表示y与x的函数关系的式子.

(2)汽车加油时,加油枪的流量为10L/min.

①如果加油前,油箱里还有5L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系;

②如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系.

(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.

八年级变量与函数(2)数学教案的全部内容由数学网提供,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!

初二数学1000字教案篇10

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。

教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1)x2+2x-3(观察二次项系数是否为“l”)

=x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等)

=(x+1)2-4。(使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2引导学生完成P.11~P.12例6的填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

说一说一元二次方程解的情况。

[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

教学后记:

初二数学1000字教案篇11

教学目标:

1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值。

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0.

也就是,在等式=a(x0)中,规定x=。

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3);(4)0.0001

三、练习

P69练习1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

初二数学1000字教案篇12

教学内容

本节课主要介绍全等三角形的概念和性质.

教学目标

1.知识与技能

领会全等三角形对应边和对应角相等的有关概念.

2.过程与方法

经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.

3.情感、态度与价值观

培养观察、操作、分析能力,体会全等三角形的应用价值.

重、难点与关键

1.重点:会确定全等三角形的对应元素.

2.难点:掌握找对应边、对应角的方法.

3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的.边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备

四张大小一样的纸片、直尺、剪刀.

教学方法

采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程

一、动手操作,导入课题

1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?

2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?

【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.

【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.

学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.

【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.

概念:能够完全重合的两个三角形叫做全等三角形.

【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?

【学生活动】动手操作,实践感知,得出结论:两个三角形全等.

【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.

【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?

【交流讨论】通过同桌交流,实验得出下面结论:

1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.

2.这时它们的三个顶点、三条边和三个内角分别重合了.

3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.

5582