教案吧 > 初中教案 > 八年级教案 >

八年级下册数学的教案

时间: 新华 八年级教案

编写教案有助于教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。下面小编给大家提供一些八年级下册数学的教案参考,希望对大家写八年级下册数学的教案有帮助。

八年级下册数学的教案篇1

教学目标:

1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

2、能力目标:

①经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,掌握画图技能。

②能够按要求作出简单平面图形旋转后的图形,并在此基础上达到巩固旋转的有关性质。

3、情感体验点:培养学生的观察能力和审美能力,激发学生学习数学的兴趣。

重点与难点:

重点:图形之间的变换关系(轴对称、平移、旋转及其组合);

难点:综合利用各种变换关系观察图形的形成。

疑点:基本图案不同,形成方式不同。

教学方法:

新授课在教师引导下,以学生的分组讨论、合作交流为主展开教学。

教学过程设计:

1、情境导入

播放自制图形形成的影片,如图351。

2、充分利用本课时引入开放性的问题:图351由四部分组成,每部分都包括两个小十字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其它方式吗?

问题本身为学生创设了一个探究图形之间变化关系的情景,图形虽十简单,但变换方式综合性强,可以让学生自由发挥,各抒已见,后由教师进行适当归纳小结:

(1)整个图形可以看做是由一个十字组成部分通过连续七次平移前后的图形共同组成;

(2)整个图形也可以看做是由左边的两个十字组成的部分通过三次放置形成的;

(3)整个图形不定期可以看做把左边的两个十字组成的部分先通过平移一次形成左右四个十字组成的图形,然后绕图形中心旋转90度前后的图形共同组成;

(4)整个图形还可以看做把左边的两个十字组成的部分通过二次轴对称形成的。

(学生可能还有其他不同描述,教师应予以肯定)

3、通过上述问题的讨论,我们看到图形的平移、旋转,轴对称变换是图形变换中最基本的三种变换方式,它们是今后设计图案的主要手段。

4、利用想一想你能将图352的左图,通过平移或旋转得到右图吗?

学生议论或动手操作会发现这是不可能的,教材意图十分明确,要告诉学生并不是所有图形都可以通过一次平移或旋转而得到的,从而要求我们今后分析图形之间的关系时,要充分利用它们各自的性质、特征正确判断和识别。那么上述图形能通过轴对称变换从左图变成右图吗?进一步让学生思考,从而得到结论是可能的。

5、例1、怎样将图353中的甲图变成乙图案?

通过相对简单活泼的问题,让学生能运用图形变换的几种不同方式解答问题(先旋转再平移后等到或先平移后旋转也可以)

例2、怎样将图354中右边的图案变成左边的图案?

留给学生充足的时间讨论交流。

(师):哪位同学有好好方法,请告诉大家!

(生):以右图案的中心为旋转中心,将图案按逆时针方向旋转900。

(生):以右图案的中心为旋转中心,将图案顺逆时针方向旋转2700。

明确可以通过不同的办法达到同样的效果,激励学生动手动脑。

5、学习小结

(1)内容总结

两个图案前后变化彩用了哪些方法?(平移、旋转,轴对称)

(2)方法归纳

①了解并知道图案变化的一般方法。

②图案变化的方法很多,在生活中要养成多途径观察,思考问题的习惯。

6、目标检测

图355是由三个正三角形拼成的,它可以看做由其中一个三角形经过怎样的变换而得到?

延伸拓展:

1、链接生活

链接一:奥运会的五环旗图案是大家熟悉的图案,请你根据所学知识分析它的形成。(用课本知识解释生活中的图形变换)

链接二:夏季是荷花盛开的季节,同学们都赞美过它出淤泥而不染的品质,很多同学曾画过荷花,请你用所学知识再画一朵荷花,看与以前有什么不同的感受(让学生进一步体会数学与生活的密切联系)

实践探索:

①实践活动列举实例归纳图形之间的变换关系(平移、旋转,轴对称及其组合)

②巩固练习课本74页中的习题3.6。

板书设计:

3.5它们是怎样变过来的。

轴对称、平移、旋转的性质例题;

图形之间的变换关系;

八年级下册数学的教案篇2

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问题和行程问题,归纳用方程(组)解决实际问题的一般步骤.

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法.

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型.

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气,树立自信心,并鼓励学生合作交流,培养学生的团队精神.

教学重点

1.初步体会列方程组解决实际问题的步骤.

2.学会用图表分析较复杂的数量关系问题。

教学难点

将实际问题转化成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是,十位数字是,则这个两位数用代数式表示为;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为.

(2)一个两位数,个位上的数为,十位上的数为,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为.

(3)有两个两位数 和,如果将放在的左边,就得到一个四位数,那么这个四位数用代数式表示为;如果将放在的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为.

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况.你能确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大2178,求这两个两位数.

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论.

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1.这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左边与放在右边所得的数之和为8484.求这个两位数.

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流.

2.师生互相交流总结出列方程(组)解决实际问题的一般步骤.

第六环节:布置作业

内容:习题7.6

A组(优等生)2,3,4

B组(中等生)2、3

C组(后三分之一生)2

八年级下册数学的教案篇3

一、学生起点分析

通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.

效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?

目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.

效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】:已知,请问:①可能是整数吗?②可能是分数吗?

【释一释】:释1.满足的为什么不是整数?

释2.满足的为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段:

1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形(右1)

2.三边长都是有理数

2.只有两边长是有理数

3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足的

解:(右2)

仿:在数轴上表示满足的

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容:

1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.

效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

八年级下册数学的教案篇4

1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。例1、1、在同一平面内两条直线的位置关系为(相交)和(平行)。2、两条直线相交成直角时,就说这两条直线互相垂直,其…

平行四边形矩形菱形正方形梯形等腰梯形图形两组对边分别平行的四边形。定义用“”表示平行四边形,例如:ABCD,平行四边形ABCD记作有一个角是直角的平有一组邻边相等的平行四边形是菱形有一组邻边相等且…

第十八章平行四边形的认识知识点回顾:平行四边形、特殊平行四边形的特征以及彼此之间的关系1.矩形是特殊的平行四边形,矩形的四个内角都是_____。矩形的对角线___2.菱形是特殊的平行四边形,菱形是四条边都__,它的两条对角线__每条对角线平…

特殊的平行四边形和一元二次方程的知识点归纳

【菱形】

1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2.菱形的性质:

(1)菱形的性质有:①平行四边形的一切性质;②四条边都相等;③对角线互相垂直,并且每一条对角线平分一组对角;④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。

(2)菱形面积=底×高=对角线乘积的一半。

3.菱形的判定:

(1)用定义判定(即一组邻边相等的平行四边形是菱形)。

(2)对角线互相垂直的平行四边形是菱形。

(3)四条边都相等的四边形是菱形。

综上可知,判定菱形时常用的思路:

四条边都相等菱形

菱形四边形

平行

四边形有一组邻边相等菱形

【矩形】

1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;

(3)矩形的四个角都相等。

4.矩形的判定方法:

(1)用定义判定(即有一个角是直角的平行四边形是矩形);

(2)三个角都是直角的四边形是矩形;

(3)对角线相等的平行四边形是矩形。

综上可知,判定矩形时常用的思路:

【正方形】

1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(1)边:四条边相等,邻边垂直且相等,对边平行且相等。

1(2)角:四个角都是直角。

(3)对角线:对角线相等且互相垂直平分,每条对角线平分一组对角。

3.正方形的判定

(1)根据定义判定;(2)对角线相等的菱形是正方形;

(2)有一个角是直角的菱形是正方形;

(3)有一组邻边相等的矩形是正方形;

(4)对角线互相垂直的矩形是正方形。

4.特殊的平行四边形之间的关系

矩形、菱形是特殊的平行四边形,正方形是更特殊的平行四边形,它既是矩形,又是菱形,它们之间的关系如图所示:

5.依次连接四边形各边中点所得到的四边形的形状:

(1)依次连接任意四边形各边中点所得到的四边形是平行变形;

(2)依次连接对角线相等的四边形各边中点所得到的四边形是菱形;

(3)依次连接对角线垂直的四边形各边中点所得到的四边形是矩形;

(4)依次连接对角线垂直且相等的四边形各边中点所得到的四边形是正方形;

八年级下册数学的教案篇5

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理。定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据。

本节内容的难点是定理及逆定理的关系。垂直平分线定理和其逆定理,题设与结论正好相反。学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点。

2、教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式。提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳。教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”。然后学生完成证明,找一名学生的证明过程,进行投影总结。最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理。这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系。

(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力。

八年级下册数学的教案篇6

第二章一元一次不等式与一元一次不等式组

1、不等关系

2、不等式的基本性质

①不等式的基本性质一:不等式的两边都加(或减)同一个整式,不等号的方向不变

②不等式的基本性质二:不等式的两边都乘(或除以)同一个正数,不等号的方向不变

③不等式的基本性质三:不等式的两边都乘(除以)同一个负数,不等号的方向改变

3、不等式的解集

①能使不等式成立的未知数的值,叫做不等式的解

②一个含有不等式所有的解,组成这个不等式的解集

③求不等式解集的过程叫做解不等式

4、一元一次不等式

①含义:不等式的左右两边都是整式,只含有一个未知数,并且未知数的次数是1

5、一元一次不等式与一次函数

6、一元一次不等式组

①一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组

②一元一次不等式组中各个不相等的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组

八年级下册数学的教案篇7

一、教学目标

(一)知识与技能:

(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

(二)过程与方法:

(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

(三)情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

二、教学重点和难点

重点:因式分解的概念及提公因式法。

难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

三、教学过程

教学环节:

活动1:复习引入

看谁算得快:用简便方法计算:

(1)7/9×13-7/9×6+7/9×2=;

(2)-2、67×132+25×2、67+7×2、67=;

(3)992–1=。

设计意图:

如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉。引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶。

注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

活动2:导入课题

P165的探究(略);

2、看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

设计意图:

引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

活动3:探究新知

看谁算得准:

计算下列式子:

(1)3x(x-1)=;

(2)(a+b+c)=;

(3)(+4)(-4)=;

(4)(-3)2=;

(5)a(a+1)(a-1)=;

根据上面的算式填空:

(1)a+b+c=;

(2)3x2-3x=;

(3)2-16=;

(4)a3-a=;

(5)2-6+9=。

在第一组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

活动4:归纳、得出新知

比较以下两种运算的联系与区别:

a(a+1)(a-1)=a3-a

a3-a=a(a+1)(a-1)

在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?

八年级下册数学的教案篇8

教学目标:

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

教学重点:

算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程

一、情境导入

请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?

这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.

二、导入新课:

1、提出问题:(书P68页的问题)

你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)

这个问题相当于在等式扩=25中求出正数x的值.

一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.

也就是,在等式=a(x0)中,规定x=.

2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.

3、想一想:下列式子表示什么意思?你能求出它们的值吗?

建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。

4、例1求下列各数的算术平方根:

(1)100;(2)1;(3);(4)0.0001

三、练习

P69练习1、2

四、探究:(课本第69页)

怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?

方法1:课本中的方法,略;

方法2:

可还有其他方法,鼓励学生探究。

问题:这个大正方形的边长应该是多少呢?

大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?

建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.

五、小结:

1、这节课学习了什么呢?

2、算术平方根的具体意义是怎么样的?

3、怎样求一个正数的算术平方根

六、课外作业:

P75习题13.1活动第1、2、3题

八年级下册数学的教案篇9

从分数到分式

一、 教学目标

1. 了解分式、有理式的概念.

2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

二、重点、难点

1.重点:理解分式有意义的条件,分式的值为零的条件.

2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

三、课堂引入

1.让学生填写P4[思考],学生自己依次填出:_____

2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为x千米/时.

轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.

3. 以上的式子_____有什么共同点?它们与分数有什么相同点和不同点?

五、例题讲解

P5例1. 当x为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母x的取值范围.

[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

(补充)例2. 当m为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

七、课后练习

1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

(3)x与y的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b,,; 整式:8x,a+b, ;

分式:,

2. X = 3. x=-1

课后反思:

八年级下册数学的教案篇10

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

(2)采用“类比”的学习方法,获取逆定理

线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

(3)通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

八年级下册数学的教案篇11

不等关系

一、教学目标

1、知识与技能目标

①理解不等式的意义.

②能根据条件列出不等式.

2、过程与方法目标

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

3、情感与态度目标

通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的信心和兴趣。

二、教学重点

通过探寻实际问题中的不等式关系,认识不等式。

三、教学难点

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

四、教学过程

第一环节:创设问题情景,引入新课

活动内容:寻找相等的量和不等的量

师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

生:

师:还有其他例子吗?

(同学们各抒己见)

师:我这里也有一些例子。拿出给同学们参考一下。

八年级下册数学的教案篇12

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量

2、会求一组数据的极差

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差

2、难点:本节课内容较容易接受,不存在难点。

三、例习题的意图分析

教材P151引例的意图

(1)、主要目的是用来引入极差概念的

(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量

(3)、交待了求一组数据极差的方法。

四、课堂引入:

引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。

五、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。

六、随堂练习:

1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .

2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .

3、下列几个常见统计量中能够反映一组数据波动范围的是( )

A.平均数 B.中位数 C.众数 D.极差

4、一组数据X 、X …X 的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )

A. 8 B.16 C.9 D.17

答案:1. 497、3850 2. 4 3. D 4.B

七、课后练习:

1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )

A. 0.4 B.16 C.0.2 D.无法确定

在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )

A. 87 B. 83 C. 85 D无法确定

3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。

4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。

5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)

90、95、87、92、63、54、82、76、55、100、45、80

计算这组数据的极差,这个极差说明什么问题?

将数据适当分组,做出频率分布表和频数分布直方图。

答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成绩优劣差距较大。(2)略

八年级下册数学的教案篇13

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件

教学过程:

一、先复习轴对称图形的定义,以及轴对称的相关的性质:

1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

2.轴对称的三个重要性质______________________________________________

_____________________________________________________________________

二、提出问题:

二、探索练习:

1.提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2.分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1.如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2.试画出与线段AB关于直线L的线段

3.如图,已知直线MN,画出以MN为对称轴的轴对称图形

小结:本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

八年级下册数学的教案篇14

第一章三角形的证明

1、等腰三角形

①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)

②全等三角形的对应边相等、对应角相等

③定理:等腰三角形的两底角相等,即位等边对等角

④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合

⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°

⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)

⑦定理:三个角都相等的三角形是等边三角形

⑧定理;有一个角等于60°的等腰三角形是等边三角形

⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形

①定理:直角三角形的两个锐角互余

②定理有两个角互余的三角形是直角三角形

③勾股定理:直角三角形两条直角边的平方和等于斜边的平方

④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形

⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题

⑥一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理

⑦定理:斜边和一条直角边分别相等的两个直角三角形全等

3、线段的垂直平分线

①定理:线段垂直平分线上的点到这条线段两个端点的距离相等

②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上

4、角平分线

①定理:角平分线上的点到这个角的两边的距离相等

②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上

八年级下册数学的教案篇15

教学目标:

一、知识与技能

1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。

三、情感态度与价值观

1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。

2、通过分组讨论,培养学生合作交流意识和探索精神。

教学重点:理解和领会反比例函数的概念。

教学难点:领悟反比例的概念。

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。

师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。

教师组织学生讨论,提问学生,师生互动。

在此活动中老师应重点关注学生:

①能否积极主动地合作交流。

②能否用语言说明两个变量间的关系。

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。

分析及解答:

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有

的形式,其中k是常数。

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。

师生行为

学生先独立思考,在进行全班交流。

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念。

概念:如果两个变量x,y之间的关系可以表示成

的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm。那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流。教师提出问题,关注学生思考。此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值。

师生行为:

学生独立思考,然后小组合作交流。教师巡视,查看学生完成的情况,并给予及时引导。在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动。

分析及解答:

1、只有xy=123是反比例函数。

2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值。

解:(1)设,因为x=2时,y=6,所以有

解得k=12

因此

(2)把x=4代入,得

三、巩固提高

活动5

1、已知y是x的反比例函数,并且当x=3时,y=8。

(1)写出y与x之间的函数关系式。

(2)求y=2时x的值。

2、y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表。

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”。

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象。反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象。

八年级下册数学的教案篇16

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题。

2.使学生理解公式与代数式的关系。

(二)能力训练点

1.利用数学公式解决实际问题的能力。

2.利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式。

2.难点:同重点。

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

一课时。

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

八年级下册数学的教案篇17

八年级下数学教案-变量与函数(2)

一、教学目的

1.使学生理解自变量的取值范围和函数值的意义。

2.使学生理解求自变量的取值范围的两个依据。

3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。

4.通过求函数中自变量的取值范围使学生进一步理解函数概念。

二、教学重点、难点

重点:函数自变量取值的求法。

难点:函灵敏处变量取值的确定。

三、教学过程

复习提问

1.函数的定义是什么?函数概念包含哪三个方面的内容?

2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的条件是什么?

(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)

4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。

新课

1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。

2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:

(1)自变量取值范围是使函数解析式(即是函数表达式)有意义。

(2)自变量取值范围要使实际问题有意义。

3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。

推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。

4.讲解P93中例3。结合例3引出函数值的意义。并指出两点:

(1)例3中的4个小题归纳起来仍是三类题型。

(2)求函数值的问题实际是求代数式值的问题。

补充例题

求下列函数当x=3时的函数值:

(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小结

1.解析法的意义:用数学式子表示函数的方法叫解析法。

2.求函数自变量取值范围的两个方法(依据):

(1)要使函数的解析式有意义。

①函数的解析式是整式时,自变量可取全体实数;

②函数的解析式是分式时,自变量的取值应使分母≠0;

③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。

(2)对于反映实际问题的函数关系,应使实际问题有意义。

3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。

练习:P94中1,2,3。

作业:P95~P96中A组3,4,5,6,7。B组1,2。

四、教学注意问题

1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。

2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。

3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。

八年级下册数学的教案篇18

一、教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

二、教学建议

(一)教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

(二)重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

(三)知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

三、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

8395