初二数学拓展教案
通过编写教案,教师可以提高教学质量和效率,从而提高学生的学习成绩和自信心。怎样写初二数学拓展教案?这里提供初二数学拓展教案分享,供大家参考。
初二数学拓展教案篇1
回顾与思考
一、学生起点分析
学生的知识技能基础:经过本章的学习,学生已掌握了一定的数据处理的方法,会用笔或计算器求一组数据的平均数、中位数和众数,能利用它们解决一些实际问题,并能初步选择恰当的数据代表对数据作出自己的评判。
学生活动经验基础:学生在本章的学习活动中,解决了一些相关的实际问题,获得了从事统计活动所必须的数学方法,形成了动手实践、自主探索、合作交流的学习方式,积累了一些数学探究活动的经验。
二、学习任务分析
本节课的学习任务是:整理归纳本章所学的知识,形成知识网络结构;会用计算器准确地求出一组数据的平均数、中位数和众数,能选择恰当的数据代表对数据作出评判;培养综合运用统计知识解决实际问题的能力,达成有关的情感态度目标。为此,本节课的教学目标是:
1.知识与技能:会用计算器准确地求出一组数据的平均数、中位数和众数。了解平均数、中位数和众数的差别,能选择恰当的数据代表对数据作出评判,并解决实际问题。
2.过程与方法:初步经历调查、统计、分析、研讨等活动过程,在活动发展学生综合运用统计知识解决实际问题的能力。
3.情感与态度:通过本章内容的回顾与思考,培养学生整理归纳知识的方法,逐步养成勤于思考、善于总结的好习惯。
三、教学过程设计
本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:归纳知识结构
内容:本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?
留出时间让学生思考、交流、梳理知识,然后师生共同归纳总结出如下知识网络结构图:
目的:引导学生将所学的知识整理归纳,总结出网络结构图,形成知识系统。帮助学生掌握正确的学习方法,养成良好的学习习惯。
注意事项:以上知识的归纳总结要以学生为主体来完成,教师不要包办代替。
第二环节:回顾重点内容[
内容:引导学生根据网络结构图,把重点知识内容再回顾一下:
1.平均数、中位数、众数的概念及举例
一般地,对于n个数x1,x2,…,xn,我们把(x1+x2+…+xn),叫做这n个数的算术平均数,简称平均数。新$课$标$第$一$网
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两
个数据的平均数)叫做这组数据的中位数。
一组数据中出现次数最多的那个数据叫做这组数据的众数。
2.平均数、中位数、众数的特征
(1)平均数、中位数、众数都是表示一组数据“平均水平”的特征数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。当一组数据中个别数据变动较大时,可选择中位数来表示这组数据的“集中趋势”。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便。当一组数据中某些数据多次重复出现时,众数是我们关心的一种统计量。
3.算术平均数和加权平均数的联系与区别及举例
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4.加权平均数中权的差异对平均数的影响及举例
在实际问题中,一组数据里的各个数据的权未必相同,权的差异对平均数的影响较大。加权平均数中,由于权的不同,会导致结果的差异。
5.利用计算器求一组数据的平均数
目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。
注意事项:在重点知识的回顾中,应注重理论联系实际,重视学生的举例,关注学生所举例子的合理性、科学性和创造性等,并据此评价学生对知识的理解水平和学习的情感态度,使他们具有:一双能用数学视角观察世界的眼睛;一个能用数学思维思考世界的头脑。
第三环节:综合运用提高
内容:1.从一批零件毛坯中抽取10件,称得它们的质量如下(单位:克):
400.0400.3401.2398.9399.8
399.8400.0400.5399.7399.8
利用计算器求出这10个零件的平均质量。
2.某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?
3.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售量,统计了这15人某月的销售量如下:
每人销售件数1800510250210150w120
人数113532[
(1)求这15位营销人员该月销售量的平均数、中位数和众数;
(2)假设销售部负责人把每位营销员的月销售量定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售量,并说明理由。
4.下图反映了甲、乙两班学生的体育成绩。
(1)不用计算,根据条形统计图,你能判断哪个班级学生的体育成绩好一些吗?
(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?
(3)如果依次将不及格、及格、中、良好、优秀记为55分、65分、75分、85分、95分,分别估计一下,甲、乙两班学生体育成绩的平均值大致是多少?算一算看你的估计结果怎么样?
(4)甲班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的道理吗?你还能写出几组数据也适合这一规律吗?
目的:以上四道题目呈阶梯状,由浅入深,由单一到综合。第1、2题分别考查学生对算术平均数、加权平均数和计算器的掌握情况;第3题通过表格信息,让学生计算平均数、中位数和众数,体会这三者在具体情境中的意义和区别,并能根据数据信息作出评判和决策;第4题综合了课本复习题的最后两题,旨在巩固学生对统计图信息的识别和判断能力,运用数据的代表—平均数和众数说明实际问题,初步体会平均数、中位数和众数三者的“对称”关系,提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。
注意事项:依据题目的层次,第1、2题和第3题的(1)问可让学生先独立笔答完成后,教师再讲评;第3题的(2)问和第4题具有开放性,特别是第4题内涵丰富,要让学生展开思维,充分讨论,在合作交流中共同提高,教师对此要作出及时的评价。
对本章知识技能的评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。
第四环节:课堂小结
内容:1.本章知识结构和重点内容。
2.综合运用统计知识解决实际问题。
3.整理归纳知识的方法,勤于思考、善于总结的好习惯。
目的:围绕本节课的教学目标,进行知识、方法、能力、习惯全方位的小结,目的是为了学生的全面发展。
注意事项:课堂小结可由教师提纲挈领、画龙点睛式地完成。
第五环节:布置作业
1.课本本章复习题。
2.在数学成长本上进行本章的小结与反思。
四、教学反思
1.华罗庚教授说:读书要从薄到厚,又从厚到薄。复习重在从厚到薄。每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。
2.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。
3.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的。
初二数学拓展教案篇2
初二上册数学知识点总结:等腰三角形
一、等腰三角形的性质:
1、等腰三角形两腰相等.
2、等腰三角形两底角相等(等边对等角)。
3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.
4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。
5、等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
6.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
初二数学拓展教案篇3
一、创设情境 导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索 建立模型
(一)认一认 形成表象
师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?
不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)
(二)找一找 感知特征
1、在例题图中找平行四边形
师:老师这有几幅图,你能在这上面找到平行四边形吗?
2、寻找生活中的平行四边形
师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)
(三)做一做 探究特征
1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】
(四)练一练 巩固表象
完成想想做做第1、2题
(五)画一画 认识高、底
1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。
3、平行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作 巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。
2、完成想想做做第6题 (课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?
(3)得出平行四边形的特性
师再捏住平行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获 拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找平行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
初二数学拓展教案篇4
一、学习目标
1、使学生了解运用公式法分解因式的意义;
2、使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的&39;形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1、请看乘法公式
左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2、公式讲解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精讲精练
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、课堂练习
教科书练习。
六、作业
1、教科书习题。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
初二数学拓展教案篇5
教学目标
1、知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式、
2、过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、
3、情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、
重、难点与关键
1、重点:掌握用提公因式法把多项式分解因式、
2、难点:正确地确定多项式的公因式、
3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
教学方法
采用“启发式”教学方法、
教学过程
一、回顾交流,导入新知
【复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
问题:
1、多项式mn+mb中各项含有相同因式吗?
2、多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由、
【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、
二、小组合作,探究方法
【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
三、范例学习,应用所学
【例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、
【教师活动】引导学生观察并分析怎样计算更为简便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本P167练习第1、2、3题、
【探研时空】
利用提公因式法计算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、课堂总结,发展潜能
1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、
2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、
六、布置作业,专题突破
课本P170习题15、4第1、4(1)、6题、
板书设计
初二数学拓展教案篇6
考标要求:
1体会因式分解法适用于解一边为0,另一边可分解为两个一次因式的乘积的一元二次方程;
2会用因式分解法解某些一元二次方程。
重点:用因式分解法解一元二次方程。
难点:用因式分解把一元二次方程化为左边是两个一次二项式相乘右边是零的形式。
一填空题(每小题5分,共25分)
1解方程(2+x)(x-3)=0,就相当于解方程()
A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
2用因式分解法解一元二次方程的思路是降次,下面是甲、乙两位同学解方程的过程:
(1)解方程:,小明的解法是:解:两边同除以x得:x=2;
(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
其中正确的是()
A小明B小亮C都正确D都不正确
3下面方程不适合用因式分解法求解的是()
A2-32=0,B2(2x-3)-=0,,D
4方程2x(x-3)=5(x-3)的根是()
Ax=,Bx=3C=,=3Dx=
5定义一种运算“※”,其规则为:a※b=(a+1)(b+1),根据这个规则,方程x※(x+1)=0的解是()
Ax=0Bx=-1C=0,=-1,D=-1=-2
二填空题(每小题5分,共25分)
6方程(1+)-(1-)x=0解是=_____,=__________
7当x=__________时,分式值为零。
8若代数式与代数式4(x-3)的值相等,则x=_________________
9已知方程(x-4)(x-9)=0的解是等腰三角形的两边长,则这个等腰三角形的周长=_______.
10如果,则关于x的一元二次方程a+bx=0的解是_________
三解答题(每小题10分,共50分)
11解方程
(1)+2x+1=0(2)4-12x+9=0
(3)25=9(4)7x(2x-3)=4(3-2x)
12解方程=(a-2)(3a-4)
13已知k是关于x的方程4k-8x-k=0的一个根,求k的值。?
14解方程:-2+1=0
15对于向上抛的物体,在没有空气阻力的情况下,有如下关系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(为方便起见,本题中g取10米/),t是抛出后所经过的时间。
如果将一物体以每秒25米的初速向上抛,物体多少秒后落到地面
初二数学拓展教案篇7
一、教学目标:
1.经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。
2了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。
二、教学重、难点:
理解中心对称图形的概念及其基本性质。
三、教学过程:
(一)创设问题情境
1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。
【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。
(课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)
师重复以上活动
2次后提问:
(1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?
(2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)
(反思:创设问题情境主要在于下面几点理由:(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。(
3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)
2.教师揭示谜底。
利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转
180O后和原来牌面一样。
3.学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:
(1)只有一张扑克牌图案颠倒后和原来牌面一样。
(2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。
(反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)
(二)学生分组讨论、思考探究:
1.师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?
生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。
2.你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“
Z+Z”演示其旋转过程。)3
.有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?
(对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、“动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)
(三)教师明晰,建立模型
1给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2.对比轴对称图形与中心对称图形:(列出表格,加深印象)
轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O对折后与原图形重合
旋转后与原图形重合
(四)解释、应用与拓广
1.教师用“Z+Z
智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。
(利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)
2.探究中心对称图形的性质
板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
3.师问:怎样找出一个中心对称图形的对称中心?
(两组对应点连结所成线段的交点)
4平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?
学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。
讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?
5逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?
学生讨论回答。
6你还能找出哪些多边形是中心对称图形?
(反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)
(五)拓展与延伸
1中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?
2.正六边形的对称中心怎样确定?
(六)魔术表演:
1.师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?
2.学生小组活动:
以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。
(新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)
四、案例小结
《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。
现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。
初二数学拓展教案篇8
教学目标
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力。
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用。
2.难点:灵活地应用公式法进行因式分解。
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;
(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;
(2)(m+4n)2;
(3)(a+b)2;
(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3.分解因式:
(1)m2-8mn+16n2
(2)m2+8mn+16n2;
(3)a2+2ab+b2;
(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;
(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。
三、随堂练习,巩固深化
课本P170练习第1、2题。
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值。
(1)x2+y2;
(2)(x-y)2
2.已知x+=-3,求x4+的值。
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2。
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;
(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;
(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。
五、布置作业,专题突破
初二数学拓展教案篇9
教学目标:
1.通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道这两个图形的名称;并能识别三角形和平行四边形,初步知道它们在日常生活中的应用。
2.在折图形、剪图形、拼图形等活动中,体会图形的变换,发展对图形的空间想象能力。
3.在学习活动中积累对数学的兴趣,增强与同学交往、合作的意识。
教学重点:直观认识三角形和平行四边形,知道它们的名称,并能识别这些图形,知道它们在日常生活中的应用。
教学难点:让学生动手在钉子板上围、用小棒拼平行四边形。
教学用具:长方形模型、长方形和正方形的纸、课件、小棒。
教学方法:实践操作法
教学过程:
一、复习铺垫
出示长方形问“小朋友们,谁愿意来介绍一下这位老朋友?他介绍得对吗?”接着出示第二个图形(正方形),问:“这个老朋友又是谁呢?”再出示圆:“它叫什么名字?这是我们已经认识的长方形、正方形和圆三位老朋友。我发现你们很喜欢折纸,是吗?今天我特意为大家准备了一个折纸的游戏,高兴吗?
二、启发思维、引出新知
1.认识三角形
(1)教师出示一张正方形纸,提问:这是什么图形?
学生回答:这是正方形。
师:你能把一张正方形纸对折成一样的两部分吗?
学生活动,教师巡视,了解学生折纸的情况。
组织学生交流你是怎样折的,折出了什么图形?
师:我们现在折出来的是一个什么图形呢?
生答:三角形。
师:小朋友们一下就认识了我们的新朋友。对了,这就是三角形。出示并贴上三角形。
板书:三角形
(2)提问:这样的图形好像在哪儿也看到过?想一想?
①先在小组里交流。
②学生回答。
③老师也带来了几个三角形。
(3)师小结:在我们的生活中有许多物体的面是三角形面,只要小朋友多观察,就会有更多的发现。
2.认识平行四边形
(1)这是一张什么形状的纸?(演示长方形纸)怎样折一下,把它折成两个完全一样的三角形?
(2)学生先想一想,然后同桌商量着试折。教师巡视
(3)交流。你们会像他一样折吗?
(4)折好后把两个三角形剪下来。要想知道这两个三角形是不是完全一样,你能有什么办法?(把它们叠在一起)这就是完全一样。
(5)现在我们手里都有这样两个一样的三角形,用它们拼一拼,看看能拼出什么图形?学生分组活动,教师巡视。
交流探讨。同学们可能拼出以下几种图形:三角形、长方形、四边形、平行四边形。每出现一种拼法,请一位同学在投影仪上向大家展示。师:这个图形真漂亮,它叫什么名字呀!这个图形就是我们要认识的另一个新朋友——平行四边形。(出示图形,并板书:平行四边形)(板书)
出示一个长方形的模型,提问:“这个图形的面是一个什么图形?”学生回答后,老师将这个长方形轻轻拉动,这时出现的是一个平行四边形。提问:“现在这个图形的面变成了一个什么图形?”
小结:我们已经认识了长方形,其实只要把它稍微变一变,就是一个平行四边形了,你看:(演示长方形变平行四边形)。对我们生活中有很多地方就利用了平行四边形可以变的特点制作了很多东西,如:篱笆、楼梯、伸缩门、可拉伸的衣架等。
三、体验深化
板书设计
认识图形(二)
认识三角形平行四边形
三角形平行四边形
初二数学拓展教案篇10
教材分析
1.本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。
2.本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。
学情分析
1.学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。
2.在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。
教学目标
知识技能:1、理解掌握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和计算。
数学思考:1、观察等腰三角形的对称性,发展形象思维。
2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。
情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
教学重点和难点
重点:等腰三角形的性质及应用。
难点:等腰三角形的性质证明。
初二数学拓展教案篇11
设计意图
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育是幼儿数学教育的重点内容。学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。根据小班幼儿的思维特点和活泼好动的性格,我将三角形的图形特征编成简短的故事,再结合图形拼摆,让孩子在玩中学、学中乐、乐中做。使幼儿养成动手、动口、动脑的好习惯,培养幼儿的创新意识。
活动目标
1、知道三角形的主要特征,即三角形由三条边,三个角组成。
2、能找出生活中和三角形相似的物体。
3、发展幼儿逻辑思维能力。
4、乐意参与活动,体验成功后的乐趣。
活动准备
1、小白兔、萝卜、蘑菇图片各一个,
2、图形组成的实物图片4张。
3、孩子人手3个三角形。
活动过程
一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。
三、引导幼儿观察比较图形,幼儿每人一个三角形。
1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、老师小结三角形特征,使幼儿获得的知识完整化。
四、复习巩固三角形的特征
1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。
并一一出示三角形,并说出为什么?
2、观察图形拼图,找出三角形,数一数用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
活动反思:
小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。
初二数学拓展教案篇12
教学
目标1联系生活中的具体事物,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的基本特征,会识别并能做出一些简单的轴对称图形。
2.在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生对数学学习的积极情感。
重点
难点理解轴对称图形的基本特征
教具
准备剪刀、纸(含平行四边形、字母NS)、教学挂图、直尺
教学
方法
手段观察、比较、讨论、动手操作
教学
过程一.新课
1.教师取一个门框上固定门的铰连让学生观察是不是左右对称?
2.出示教学挂图:_、飞机、奖杯的实物图片
将实物图片进一步抽象为平面图形,对折以后问学生发现了什么?
生:对折后两边能完全重合。
师;对折后能完全重合的图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
教师先示范,让学生认识_城楼图的对称轴,然后让学生再找出飞机图、奖杯图的对称轴各在哪里。
3.练习:(出示小黑板)
(1)P57“试一试”
判断哪几个图形是轴对称图形?试着画出对称轴。
估计学生会将平行四边形看作是轴对称图形,可让两个学生到讲台前用平行四边形纸对折一下,看对折以后两部分是否完全重合。由此得出结论;平行四边形不是轴对称图形。
(2)用剪刀和纸剪一个轴对称图形。
初二数学拓展教案篇13
教学目标
1.通过实际操作,了解什么叫做轴对称变换.
2.如何作出一个图形关于一条直线的轴对称图形.
教学重点
1.轴对称变换的定义.
2.能够按要求作出简单平面图形经过轴对称后的图形.
教学难点
1.作出简单平面图形关于直线的轴对称图形.
2.利用轴对称进行一些图案设计.
教学过程
Ⅰ.设置情境,引入新课
在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.
将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.
准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.
这节课我们就是来作简单平面图形经过轴对称后的图形.
Ⅱ.导入新课
由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.
类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.
对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方
向和位置的变化在图案设计中的奇妙用途.
下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.
结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;
连结任意一对对应点的线段被对称轴垂直平分.
我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.
取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.
(1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由.
(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?
(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.
注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.
Ⅲ.随堂练习
(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).
(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
答案:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.
(二)回顾本节课内容,然后小结.
Ⅳ.课时小结
本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.
初二数学拓展教案篇14
1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.
2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.
重点
通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.
难点
一元二次方程及其二次项系数、一次项系数和常数项的识别.
活动1复习旧知
1.什么是方程?你能举一个方程的例子吗?
2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.
A.0B.1C.2D.3
活动2探究新知
根据题意列方程.
1.教材第2页问题1.
提出问题:
(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?
(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?
(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.
2.教材第2页问题2.
提出问题:
(1)本题中有哪些量?由这些量可以得到什么?
(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?
(3)如果有x个队参赛,一共比赛多少场呢?
3.一个数比另一个数大3,且两个数之积为0,求这两个数.
提出问题:
本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?
4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?
活动3归纳概念
提出问题:
(1)上述方程与一元一次方程有什么相同点和不同点?
(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?
(3)归纳一元二次方程的概念.
1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
提出问题:
(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?
(2)为什么要限制a≠0,b,c可以为0吗?
(3)2x2-x+1=0的一次项系数是1吗?为什么?
3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).
活动4例题与练习
例1在下列方程中,属于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.
例2教材第3页例题.
例3以-2为根的一元二次方程是()
A.x2+2x-1=0B.x2-x-2=0
C.x2+x+2=0D.x2+x-2=0
总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.
练习:
1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.
2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4页练习第2题.
4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.
答案:1.a≠1;2.略;3.略;4.k=4.
活动5课堂小结与作业布置
课堂小结
我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?
作业布置
教材第4页习题21.1第1~7题.
初二数学拓展教案篇15
学习目标
1、通过运算多项式乘法,来推导平方差公式,学生的认识由一般法则到特殊法则的能力。
2、通过亲自动手、观察并发现平方差公式的结构特征,并能从广义上理解公式中字母的含义。
3、初步学会运用平方差公式进行计算。
学习重难点重点是平方差公式的推导及应用。
难点是对公式中a,b的广泛含义的理解及正确运用。
自学过程设计教学过程设计
看一看
认真阅读教材,记住以下知识:
文字叙述平方差公式:_________________
用字母表示:________________
做一做:
1、完成下列练习:
①(m+n)(p+q)
②(a+b)(x-y)
③(2x+3y)(a-b)
④(a+2)(a-2)
⑤(3-x)(3+x)
⑥(2m+n)(2m-n)
想一想
你还有哪些地方不是很懂?请写出来。
_______________________________
_______________________________
________________________________.
1.下列计算对不对?若不对,请在横线上写出正确结果.
(1)(x-3)(x+3)=x2-3(),__________;
(2)(2x-3)(2x+3)=2x2-9(),_________;
(3)(-x-3)(x-3)=x2-9(),_________;
(4)(2xy-1)(2xy+1)=2xy2-1(),________.
2.(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;
(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_________.
3.计算:50×49=_________.
应用探究
1.几何解释平方差公式
展示:边长a的大正方形中有一个边长为b的小正方形。
(1)请计算图的阴影部分的面积(让学生用正方形的面积公式计算)。
(2)小明将阴影部分拼成一个长方形,这个长方形长与宽是多少?你能表示出它的面积吗?
图2
2.用平方差公式计算
(1)103×93(2)59.8×60.2
拓展提高
1.阅读题:
我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)时,发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算式能用乘法公式计算.解答过程如下:
原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=……=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗?请试试看!
2.仔细观察,探索规律:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数.
堂堂清
一、选择题
1.下列各式中,能用平方差公式计算的是()
(1)(a-2b)(-a+2b);
(2)(a-2b)(-a-2b);
(3)(a-2b)(a+2b);
(4)(a-2b)(2a+b).
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
2.计算(-4x-5y)(5y-4x)的结果是()
A.16x2-25y2B.25y2-16x2C.-16x2-25y2D.16x2+25y2
3.下列计算错误的是()
A.(6a+1)(6a-1)=36a2-1
B.(-m-n)(m-n)=n2-m2
C.(a3-8)(-a3+8)=a9-64D.(-a2+1)(-a2-1)=a4-1
4.下列计算正确的是()
A.(a-b)2=a2-b2
B.(a-b)(b-a)=a2-b2
C.(a+b)(-a-b)=a2-b2D.(-a-b)(-a+b)=a2-b2
5.下列算式能连续两次用平方差公式计算的是()
A.(x-y)(x2+y2)(x-y)B.(x+1)(x2-1)(x+1)
C.(x+y)(x2-y2)(x-y)D.(x+y)(x2+y2)(x-y)
二、计算:
(1)(5ab-3x)(-3x-5ab)
(2)(-y2+x)(x+y2)
教后反思本节课是运算多项式乘法,来推导平方差公式,使学生的认识由一般法则到特殊法则的能力,并能归纳总结出平方差公式的结构特征,利用平方差公式来进行运算。