教案吧 > 高中教案 > 高二教案 >

数学教案高二

时间: 新华 高二教案

教案可以帮助教师及时了解学生的学习情况和学习成果,从而针对性地调整教学策略。数学教案高二怎么才能写好?这里分享一些数学教案高二,方便大家学习。

数学教案高二篇1

本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。

一、指导思想

以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。

二、工作思路

1、在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。

2、以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。

3、教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,

三、教材分析(结构系统、单元内容、重难点)

必修5:

第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;

第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;

第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;

必修2:

第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;

第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。

四、学情分析

经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。

五、工作目标

1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。

2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。

3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。

4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。

六、具体措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

数学教案高二篇2

【使用说明】1、复习教材P124-P127页,40分钟时间完成预习学案

2、有余力的学生可在完成探究案中的部分内容。

【学习目标】

知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

情感态度价值观:通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用

【难点】两角差余弦公式的推导过程

预习自学案

一、知识链接

1.写出的三角函数线:

2.向量,的数量积,

①定义:

②坐标运算法则:

3.,,那么是否等于呢?

下面我们就探讨两角差的余弦公式

二、教材导读

1.、两角差的余弦公式的推导思路

如图,建立单位圆O

(1)利用单位圆上的三角函数线

又OM=OB+BM

=OB+CP

=OA_____+AP_____

=

从而得到两角差的余弦公式:

____________________________________

(2)利用两点间距离公式

如图,角的终边与单位圆交于A()

角的终边与单位圆交于B()

角的终边与单位圆交于P()

点T()

AB与PT关系如何?

从而得到两角差的余弦公式:

____________________________________

(3)利用平面向量的知识

用表示向量,

=(,)=(,)

则.=

设与的夹角为

①当时:

=

从而得出

②当时显然此时已经不是向量的夹角,在范围内,是向量夹角的补角.我们设夹角为,则+=

此时=

从而得出

2、两角差的余弦公式

____________________________

三、预习检测

1.利用余弦公式计算的值.

2.怎样求的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1.利用差角余弦公式求的值.

例2.已知,是第三象限角,求的值.

训练案

一、基础训练题

1、

2、¬¬¬¬¬¬¬¬¬¬¬

3、

二、综合题

--------------------------------------------------

数学教案高二篇3

教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课

教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征

(1)确定性:设A是一个给定的集合,-是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样

5.元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A

(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作aA(或aA)(举例)

6.常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N_或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{-2,3-+2,5y3--,-2+y2},…;

例1.(课本例1)

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{---3>2},{(-,y)y=-2+1},{直角三角形},…;

例2.(课本例2)

说明:(课本P5最后一段)

思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(-,y)y=-2+3-+2}与{yy=-2+3-+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置

书面作业:习题1.1,第1-4题

五、板书设计(略)文章

数学教案高二篇4

过程与方法目标:通过让学生探究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语言之间的相互转化。

3、情感、态度与价值目标:通过用集合论的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。

二、教学重点和难点

重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。

难点:从集合的角度理解点、线、面之间的相互关系。

三、教学方法和教学手段

在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给同学一个直观的展示,然后得出结论。下附学生的学案

四、教学过程

教学环节教学内容师生互动设计意图

课题引入让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。学生观察、讨论、总结,教师引导。提高学生的学习兴趣

新课讲解

基础知识

能力拓展

探索研究一、构成几何体的基本元素。

点、线、面

二、从集合的角度解释点、线、面、体之间的相互关系。

点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。

三、从运动学的角度解释点、线、面、体之间的相互关系。

1、点运动成直线和曲线。

2、直线有两种运动方式:平行移动和绕点转动。

3、平行移动形成平面和曲面。

4、绕点转动形成平面和曲面。

5、注意直线的两种运动方式形成的曲面的区别。

6、面运动成体。

四、点、线、面、之间的相互位置关系。

1、点和线的位置关系。

点A

2、点和面的位置关系。

3、直线和直线的位置关系。

4、直线和平面的位置关系。

5、平面和平面的位置关系。通过对几何体的观察、讨论由学生自己总结。

引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。

通过课件演示及学生的讨论,得出从运动学的角度发现点、线、面之间的相互关系。

引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。培养学生的观察能力。

培养学生将所学知识建立相互联系的能力。

让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。

培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。

课堂小结1、学习了构成几何体的基本元素。

2、掌握了点、线、面之间的相互关系。

3、了解了点、线、面之间的相互的位置关系。由学生总结归纳。培养学生总结、归纳、反思的学习习惯。

课后作业试着画出点、线、面之间的几种位置关系。学生课后研究完成。检验学生上课的听课效果及观察能力。

附:1.1.1构成空间几何体的基本元素学案

(一)、基础知识

1、几何体:________________________________________________________________

2、长方体:________________________________________________________________

3、长方体的面:____________________________________________________________

4、长方体的棱:____________________________________________________________

5、长方体的顶点:__________________________________________________________

6、构成几何体的基本元素:__________________________________________________

7、你能说出构成几何体的几个基本元素之间的关系吗?

(二)、能力拓展

1、如果点做连续运动,运动出来的轨迹可能是______________________因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________如果点运动的轨迹改变,则运动的轨迹是____________试举几个日常生活中点运动成线的例子___________________________________

2、在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?

3、你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________

(三)、探索与研究

1、构成几何体的基本元素是_________,__________,____________.

2、点和线能有几种位置关系_________________________你能画图说明吗?

3、点和平面能有几种位置关系_______________________你能画图说明吗?

4、直线和直线能有几种位置关系________________________你能画图说明吗?

数学教案高二篇5

教学目标

1.把握等比数列前项和公式,并能运用公式解决简单的问题.

(1)理解公式的推导过程,体会转化的思想;

(2)用方程的思想熟悉等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的练习,培养他们实事求是的科学态度.

教学建议

教材分析

(1)知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

(2)重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要非凡注重和两种情况.

教学建议

(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证实结论.

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的爱好.

(4)编拟例题时要全面,不要忽略的情况.

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

(6)补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

(1)通过教学使学生把握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

(问题见教材第129页)提出问题:(幻灯片)

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

(板书)即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

(板书)等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

(板书)③两端同乘以,得

④,

③-④得⑤,(提问学生如何处理,适时提醒学生注重的取值)

当时,由③可得(不必导出④,但当时设想不到)

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

(板书)例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

,

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注重对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略.

五、板书设计:

等比数列前项和公式例题

数学教案高二篇6

评课内容:

他在教学本节课时,精心设计游戏,让学生在游戏中感悟数学的魅力,领悟数学的生活化。创造性地使用教材资源,合理运用教学方法,充分发挥多媒体辅助教学的优势,营造生动活泼的学习氛围,使学生始终充满信心、充满激情地学习数学。不仅如此,教学中,他还用饱满的热情、生动形象的语言、具体的活动材料、富有趣味化的活动形式,为学生创设了独立思考、自我体验、自我探索、合作交流的学习情境,使得教学过程始终民主、平等、宽松、愉快。本节课条理清楚,层次分明,我认为有以下几点值得我校教师学习与借鉴:

1、精心设计游戏活动,让学生在游戏中亲历数学,体验数学。在这一节课中,他精心设计了九个游戏,贯穿于整个教学之中。《数学课程标准》明确指出:"让学生在具体的数学活动中体验数学知识。"这节课通过一系列的数学游戏活动,学生逐渐地、有层次地提高了自己的数学水平,丰富了对可能、不可能、一定的现象的亲身体验。如在教学"一定"这个概念时,林主任在透明网袋里放入三个红球,非常直观,然后让学生说一说,摸到红球的可能性是多少,学生通过前面的学习,很快地说出答案,可能性是1,一定能摸到红球。能因势利导,得出了"一定"的概念。整个教学过程就成为游戏-猜测-体验-推想-验证的游戏过程,使学生在游戏中亲历数学,体验数学。

2、教学要紧密联系生活,突出学以致用。本节课教学一开始,就从平时学生课间游戏"石头、剪子、布"入手,提出游戏是否公平,与学生生活实际相联系,激发学生的探索学习积极性,调动了学生学习的主动性。课上所设计的一系列游戏,如摸球游戏,翻扑克牌游戏等都非常贴近学生的生活场景,体现了数学来源于生活这个理念,又用本节课中所获得的知识解决游戏是否公平的问题,体现了数学反过来又服务于生活的理念。让学生感到数学与生活息息相关。如在学习了可能性是多少以后,让学生自己设计游戏规则,并进行交流。即突出了学以致用的学习方式,又使学生兴趣盎然地投入到学习过程中。学生在轻松、愉悦的学习氛围中取得了较好的学习效果。

3、要让学生成为课堂学习的主体。这一节课,充分发挥学生在学习中的主体作用。让学生自己在各种游戏中感悟数学知识,领悟数学魅力。整个教学过程,教师只是一个引导者,全部发现都是由学生在思考与交流的情况下得出来的。如:"你们认为呢"、"你说呢"等。话虽不多,但每一句都很精炼,都能起到画龙点睛的作用。让学生情不自禁的"走"到课堂上来。与学生进行交流时,也能俯下身,蹲下来进行沟通,拉近老师与学生间的实际距离,更拉近了师生间的心理距离。如在让学生自己设计游戏规则时,教师不时地俯下身来与学生轻声的交流,较好地诠释了新课程的理念。

总之,这节课充分体现了教授者先进的教学理念和高超的教学艺术,为我校教师提高课堂教学的有效性起到了引领和示范作用。

12990