高二数学教案ppt
教案可以帮助教师明确教学目标和内容,从而更好地组织教学。写好高二数学教案ppt有什么技巧?这里给大家整理高二数学教案ppt,方便大家学习。
高二数学教案ppt篇1
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学教案ppt篇2
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
高二数学教案ppt篇3
【学习目标】
1、进一步体会数形结合的思想,提高分析问题解决问题的能力;
2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;
3、掌握诱导公式在求值和化简中的应用.
【学习重点】正切函数的诱导公式及应用
【学习难点】正切函数诱导公式的推导
【学习过程】
一、预习自学
1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系?
我们可以归纳出以下公式:
tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=
tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=
2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。
414【导学案】正切函数的诱导公式
给上述箭头上填上相应的文字
二、合作探究
探究1试运用414【导学案】正切函数的诱导公式,414【导学案】正切函数的诱导公式的正、余弦函数的诱导公式推证公式tan(414【导学案】正切函数的诱导公式和tan414【导学案】正切函数的诱导公式.
探究2若tan414【导学案】正切函数的诱导公式,借助三角函数定义求角414【导学案】正切函数的诱导公式的正弦函数值和余弦函数值.
探究3求414【导学案】正切函数的诱导公式的值.
三、达标检测
1下列各式成立的是()
Atan(414【导学案】正切函数的诱导公式=-tan414【导学案】正切函数的诱导公式Btan(414【导学案】正切函数的诱导公式=tan414【导学案】正切函数的诱导公式
Ctan(-414【导学案】正切函数的诱导公式)=-tan414【导学案】正切函数的诱导公式Dtan(2414【导学案】正切函数的诱导公式)=tan414【导学案】正切函数的诱导公式
2求下列三角函数数值
(1)tan(-414【导学案】正切函数的诱导公式(2)tan240414【导学案】正切函数的诱导公式414【导学案】正切函数的诱导公式(3)tan(-1574414【导学案】正切函数的诱导公式)
3化简求值
tan675414【导学案】正切函数的诱导公式+tan765414【导学案】正切函数的诱导公式+tan(-300414【导学案】正切函数的诱导公式)+tan(-690414【导学案】正切函数的诱导公式)+tan1080414【导学案】正切函数的诱导公式
四、课后延伸
求值:414【导学案】正切函数的诱导公式
高二数学教案ppt篇4
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
二、教学目标
知识目标:(1)函数单调性的定义
(2)函数单调性的证明
能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
高二数学教案ppt篇5
(一)、课题引入:
教师创设问题情景,激发学生的探究__,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
说课综述:
以上是我对《__x》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高二数学教案ppt篇6
【教学目标】
知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。
能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。
情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
重点:中心对称图形的概念和性质。
难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。
关键:已知点A和点O,会作点Aˊ,使点Aˊ与点A关于点O成中心对称。
【课前准备】
叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。
【教学过程】
一.复习
回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。
二.创设情境
用剪好的图案,让学生欣赏。师:这剪纸有哪些变换?生:轴对称变换。师:指出对称轴。生:(能结合图案讲)。生:还有旋转变换。师:指出旋转中心、旋转的角度?生:90°、180°、270°。
三、合作学习
1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点O旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。
探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点O旋转180°,学生动手后发现:平行四边形ABCD旋转180°后所得的像与原图形重合。师:为什么重合?师:作适当解释或学生自己发现:∵OA=OC,∴点A绕点O旋转180°与点C重合。同理可得,点C绕点O旋转180°与点A重合。点B绕点O旋转180°与点D重合。点D绕点O旋转180°与点B重合。
2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。
师:等边三角形是中心对称图形吗?生:不是。
3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。
平形四边形是轴对称图形吗?答:不是轴对称图形。
4、两个图形关于点O成中心对称的概念:如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。
中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。
相同点:都有旋转中心,旋转180°后都会重合。
做一做:P109
5、根据中心对称图形的定义,得出中心对称图形的性质:
对称中心平分连结两个对称点的线段
通过中心对称的概念,得到P109性质后,主要是理解与应用。如右图,若A、B关于点O的成中心对称,∴点O是A、B的对称中心。
反之,已知点A、点O,作点B,使点A、B关于以O为对称中心的对称点。让学生练习,多数学生会做,若不会做,教师作适当的启发。
做P106例2,让学生思考1~2分钟,然后师生共同解答。
(P106)例2解:∵平行四边形是中心对称图形,O是对称中心,
EF经过点O,分别交AB、CD于E、F。
∴点E、F是关于点O的对称点。
∴OE=OF。
四、应用新知,拓展提高
例如图,已知△ABC和点O,作△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称。
分析:先让学生作点A关于以点O为对称中心的对称点Aˊ,
同理:作点B关于以点O为对称中心的对称点Bˊ,
作点C关于以点O为对称中心的对称点Cˊ。
∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。解:略。
课内练习P110
小结
今天我们学习了些什么?
1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。
2、会作中心对称图形,关键是会作点A关于以O为对称中心的对称点Aˊ。
3、我们已学过的中心对称图形有哪些?
作业
P110A组1、2、3、4,B组5、6必做C组7选做。
高二数学教案ppt篇7
1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.
2.本节课要重点掌握的规律方法
(1)掌握画程序框图的几点注意事项,见讲1;
(2)掌握应用顺序结构表示算法的步骤,见讲2.
3.本节课的易错点
对程序框图的理解有误致错,如讲1.
课下能力提升(二)
[学业水平达标练]
题组1程序框图
1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()
A.连接点B.判断框C.流程线D.处理框
解析:选C流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.
2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()
A.abcdB.dcabC.bacdD.cbad
答案:D
3.如果输入n=2,那么执行如下算法的结果是()
第一步,输入n.
第二步,n=n+1.
第三步,n=n+2.
第四步,输出n.
A.输出3B.输出4
C.输出5D.程序出错
答案:C
题组2顺序结构
4.如图所示的程序框图表示的算法意义是()
A.边长为3,4,5的直角三角形面积
B.边长为3,4,5的直角三角形内切圆面积
C.边长为3,4,5的直角三角形外接圆面积
D.以3,4,5为弦的圆面积
解析:选B由直角三角形内切圆半径r=a+b-c2,知选B.
第4题图第5题图
5.(2016•东营高一检测)给出如图所示的程序框图:
若输出的结果为2,则①处的执行框内应填的是()
A.x=2B.b=2
C.x=1D.a=5
解析:选C∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.
6.写出如图所示程序框图的运行结果:S=________.
解析:S=log24+42=18.
答案:18
7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.
解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.
程序框图如图:
8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.
解:自然语言算法如下:
第一步,求f(3)的值.
第二步,求f(-5)的值.
第三步,将前两步的结果相加,存入y.
第四步,输出y.
程序框图:
[能力提升综合练]
1.程序框图符号“”可用于()
A.输出a=10B.赋值a=10
C.判断a=10D.输入a=1
解析:选B图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.
2.(2016•广州高一检测)如图程序框图的运行结果是()
A.52B.32
C.-32D.-1
解析:选C因为a=2,b=4,所以S=ab-ba=24-42=-32,故选C.
3.(2016•广州高一检测)如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()
A.9B.10
C.11D.12
解析:选C由题意知该算法是计算a1+a22的值.
∴3+a22=7,得a2=11,故选C.
4.(2016•佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()
A.x=1B.x=2
C.b=1D.b=2
解析:选B若b=6,则a=7,∴x3-1=7,∴x=2.
5.根据如图所示的程序框图所表示的算法,输出的结果是________.
解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.
答案:2
6.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.
图甲图乙
解析:图甲空白部分的面积为a2-π16a2,故图乙①中应填S=a2-π16a2.
答案:S=a2-π16a2
7.在如图所示的程序框图中,当输入的x的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.
(1)该程序框图解决的是一个什么问题?
(2)当输入的x的值为3时,求输出的f(x)的值.
(3)要想使输出的值,求输入的x的值.
解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.
(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).
因为f(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.
所以f(x)=-x2+4x.
则f(3)=-32+4×3=3,
所以当输入的x的值为3时,输出的f(x)的值为3.
(3)因为f(x)=-x2+4x=-(x-2)2+4,
所以当x=2时,f(x)max=4,
所以要想使输出的值,输入的x的值应为2.
8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:
(1)图框①中x=2的含义是什么?
(2)图框②中y1=ax+b的含义是什么?
(3)图框④中y2=ax+b的含义是什么?
(4)该程序框图解决的是怎样的问题?
(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.
解:(1)图框①中x=2表示把2赋值给变量x.
(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.
(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax+b的值,并把这个值赋给y2.
(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.
(5)y1=3,即2a+b=3.⑤
y2=-2,即-3a+b=-2.⑥
由⑤⑥,得a=1,b=1,
所以f(x)=x+1.
高二数学教案ppt篇8
一、教学目标
(1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
(2)理解逻辑联结词“或”“且”“非”的含义;
(3)能用逻辑联结词和简单命题构成不同形式的复合命题;
(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
(5)会用真值表判断相应的复合命题的真假;
(6)在知识学习的基础上,培养学生简单推理的技能.
二、教学重点难点:
重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平.……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)
例1判断以下各语句是不是命题,若是,判断其真假:
命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.
初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.
2.讲授新课
大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
(1)什么叫做命题?
可以判断真假的语句叫做命题.
判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如x2-5x+6=0
中含有变量,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
(2)介绍逻辑联结词“或”、“且”、“非”.
“或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
命题可分为简单命题和复合命题.
不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
(4)命题的表示:用p,q,r,s,……来表示.
(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
我们接触的复合命题一般有“p或q”“p且q”、“非p”、“若p则q”等形式.
给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.
在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
例2判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
(1)12>5;
(2)0.5非整数;
(3)内错角相等,两直线平行;
(4)菱形的对角线互相垂直且平分;
(5)平行线不相交;
(6)若ab=0,则a=0.
(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)
例3写出下表中各给定语的否定语(用课件打出来).
分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
“至多有n个”的否定语是“至少有n+1个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
4.课堂练习:第26页练习1,2.
5.课外作业:第29页习题1.61,2.
高二数学教案ppt篇9
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学教案ppt篇10
教材分析教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的.思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
高二数学教案ppt篇11
Ⅰ.设置情境
(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)
上节课我们只讨论了二次项系数的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?
Ⅱ.探索研究
(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)
生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数的一元二次不等式的解集.
生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.
师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.
(待学生阅读完毕,教师再简要讲解一遍.)
[知识运用与解题研究]
由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求
解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)
(1)(2)
(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)
训练二可化为一元一次不等式组来求解的不等式.
目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如(或)的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)
【答】因为满足不等式组或的x都能使原不等式成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.
这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).
(1)[P20练习中第1大题]
(2)[P20练习中第1大题]
(3)[P20练习中第2大题]
(老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).
例5解不等式
因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解(或)之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。
解:(略)
现在请同学们完成课本P21练习中第3、4两大题。
(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)
[训练三]用“符号法则”解不等式的复式训练。
(通过多媒体或其他载体给出下列各题)
1.不等式与的解集相同此说法对吗?为什么[补充]
2.解下列不等式:
(1)[课本P22第8大题(2)小题]
(2)[补充]
(3)[课本P43第4大题(1)小题]
(4)[课本P43第5大题(1)小题]
(5)[补充]
(每题均先由学生说出解题思路,教师扼要板书求解过程)
参考答案:
1.不对。同时前者无意义而后者却能成立,所以它们的解集是不同的。
2.(1)
(2)原不等式可化为:,即
解集为。
(3)原不等式可化为
解集为
(4)原不等式可化为或
解集为
(5)原不等式可化为:或解集为
Ⅲ.总结提炼
这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。
(五)布置作业
(P22.2(2)、(4);4;5;6。)
(六)板书设计
高二数学教案ppt篇12
一、设计构思
1、设计理念
注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造”过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。
注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的发展。在问题解决的探究过程中应体现“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。
注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
2、教材分析
幂函数是江苏教育出版社普通高中课程标准实验教科书数学(必修1)第二章第四节的内容。该教学内容在人教版试验修订本(必修)中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。《标准》将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。
3、教学目标的确定
鉴于上述对教材的分析和新课程的理念确定如下教学目标:
⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
⑵能应用幂函数的图象和性质解决有关简单问题。
⑶加深学生对研究函数性质的基本方法和流程的经验。
⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。
4、教学方法和教具的选择
基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,体现以学生为主体,教师主导作用的教学思想。
教具:多媒体。制作多媒体课件以提高教学效率。
5、教学重点和难点
重点是从具体幂函数归纳认识幂函数的一些性质并作简单应用。
难点是引导学生概括出幂函数性质。
6、教学流程
基于新课程理念在教学过程中的体现,教学流程的基线为:
考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开。
明线:
暗线:
二、实施方案
问题导引师生活动设计意图
问题情境⑴写出下列y关于x的函数解析式:
①正方形边长x、面积y
②正方体棱长x、体积y
③正方形面积x、边长y
④某人骑车x秒内匀速前进了1km,骑车速度为y
⑤一物体位移y与位移时间x,速度1m/s
学生口答,教师板书答案。幻灯片演示问题。
由具体问题入手,从熟悉的情景引入,提高学生的参与程度。符合学生认识特点。
⑵上述函数解析式有什么共同特征?是否为指数函数?学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳。投影演示定义。引导学生观察,训练学生归纳能力。并与前面知识进行区分,以进一步帮助学生明晰概念。
⑶判别下列函数中有几个幂函数?
①y=②y=2x2③y=x④y=x2+x⑤y=-x3
学生独立思考,回答。学生鉴别。幻灯片演示题目。
巩固概念,强化学生对概念形式特征的把握。
⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?
学生讨论,教师引导。学生回答。
引导学生回想前面学习指数函数与对数函数的研究内容和过程。启发学生用类比思想进行研究幂函数。
⑸幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。
激发学生探讨的欲望,提高学生主动参与程度。
⑹写出下列函数的定义域,并指出它们的奇偶性:①y=x②y=③y=x④y=x
学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。(幻灯片演示)引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。
⑺上述函数的单调性如何?如何判断?
学生思考:作图引发学生作图研究函数性质的兴趣。函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。
⑻在同一坐标系内作出上述函数的图象。学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示(附图1)通过超级链接几何画板演示。训练学生作图的基本功,加强学生的实践,让学生在自己的经验中认识幂函数的图象。避免教师直接使用计算机演示图象,剥夺学生动手的机会。
⑼上述函数图象有哪些共同点?学生讨论,总结。教师引导。可将学生已熟悉的函数y=,y=x一同投影,帮助学生观察。(投影演示结论)
训练学生观察分析能力。
⑽回答第7个问题。
学生思考,回答。教师注意学生叙述的严密。训练学生的语言叙述能力。再次体会与指数函数、对数函数性质的区别。体会幂指数的不同情况对函数单调性的影响。
⑾图象之间有什么区别?特别是在分布上。与常数有什么联系?
教师通过几何画板演示图象在第一象限内的变化规律,以验证学生猜想。通过超级链接几何画板演示。(附图2)
这是较高要求,可以让学生自由猜想和发言。进一步提高学生观察,归纳能力。
⑿巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x②y=x③y=x。
学生独立思考并回答。
训练学生自觉运用幂函数图象性质的基本规律。
⒀简单应用1:比较下列各组中两个值的大小,并说明理由:
①0.75,0.76;
②(-0.95),(-0.96);
③0.23,0.24;
④0.31,0.31
学生思考,作答,教师引导学生叙述语言的逻辑性。
训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。
⒁请学生考虑可以如何验证上述答案的正确。
学生实践。使用计算器验证,提高学生使用学习工具的意识。
⒂简单应用2:幂函数y=(m-3m-3)x在区间上是减函数,求m的值。
学生思考,作答。教师板演。对幂函数定义进一步巩固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。
⒃简单应用2:
已知(a+1)<(3-2a),试求a的取值范围。
学生思考,作答。教师板演。
训练学生灵活使用性质解题。
数学交流⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验?学生思考、小组讨论,教师引导。让学生回顾,小结,将对学生形成知识系统产生积极影响。
数学再现
⒅布置作业:
课本p.732、3、4、思考5思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。
几点说明:
⑴本节课开始时要注意用相关熟悉例子引入新课。
⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。
⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。
⑷本设计相关课件采用PowerPoint演示文稿,其中部分使用超级链接至几何画板(4.06版本)进行演示。
高二数学教案ppt篇13
【教学目标】
掌握两平面垂直的判定和性质,并用以解决有关问题.
【知识梳理】
1.定义
两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
2.两个平面垂直的判定和性质
语言表述图示字母表示应用
判定根据定义.证明两平面所成的二面角是直二面角.
?AOB是二面角??a??的平面角,且?AOB=90?,则???证两平面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.???性质如果两个平面垂直,那么它们所成二面角的平面角是直角.
???,?AOB是二面角??a??的平面角,则?AOB=90?
证两条直线垂直
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.?a??
证直线和平面垂直
重要提示
1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面?的垂线,通常是先作(找)一个过点P并且和?垂直的平面?,设???=l,在?内作直线a?l,则a??.
2.三种垂直关系的证明
(1)线线垂直的证明
①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;
②利用“线面垂直的定义”,即由“线面垂直?线线垂直”;
③利用“三垂线定理或三垂线定理的逆定理”.
(2)线面垂直的证明
①利用“线面垂直的判定定理”,即由“线线垂直?线面垂直”;
②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;
③利用“面面垂直的性质定理”,即由“面面垂直?线面垂直”;
④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.
(3)面面垂直的证明
①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;
②利用“面面垂直的判定定理”,即由“线面垂直?面面垂直”.
1、在三棱锥A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是锐角三角形,那么必有……()
A、平面ABD⊥平面ADCB、平面ABD⊥平面ABC
C、平面ADC⊥平面BCDD、平面ABC⊥平面BCD
高二数学教案ppt篇14
教学目的:掌握圆的标准方程,并能解决与之有关的.问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
2指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3判断3x-4y-10=0和x2+y2=4的位置关系
4圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高二数学教案ppt篇15
《任意角和弧度制》教案
教学准备
教学目标
1、知识与技能:
(1)推广角的概念、引入大于角和负角;
(2)理解并掌握正角、负角、零角的定义;
(3)理解任意角以及象限角的概念;
(4)掌握所有与角终边相同的角(包括角)的表示方法;
(5)树立运动变化观点,深刻理解推广后的角的概念;
(6)揭示知识背景,引发学生学习兴趣;
(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。
2、过程与方法:
通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。
3、情态与价值:
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。
教学重难点
重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。
难点:终边相同的角的表示。
教学工具
投影仪等。
教学过程
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?
我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。
【探究新知】
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle)。如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle)。
3.学习小结:
(1)你知道角是如何推广的吗?
(2)象限角是如何定义的呢?
(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直线上的角的集合。
课后习题
作业:
1、习题1.1A组第1,2,3题.
2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,
进一步理解具有相同终边的角的特点.
板书
略
高二数学教案ppt篇16
一、教学目标
1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。
2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。
3、通过对四种命题之间关系的学习,培养学生逻辑推理能力
4、初步培养学生反证法的数学思维。
二、教学分析
重点:四种命题;难点:四种命题的关系
1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。
2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,
3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。
三、教学手段和方法(演示教学法和循序渐进导入法)
1.以故事形式入题
2多媒体演示
四、教学过程
(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。
这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!
设计意图:创设情景,激发学生学习兴趣
(二)复习提问:
1.命题“同位角相等,两直线平行”的条件与结论各是什么?
2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?
3.原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.
学生活动:
口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.
设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.
(三)新课讲解:
1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。
2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。
3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。
高二数学教案ppt篇17
一、教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
二、教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
三、学法
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四、教学过程
(一)创设情境(3分钟)
“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题,
(二)猜想—推理—证明(15分钟)
激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)
在三角形中,角与所对的边满足关系
注意:
1.强调将猜想转化为定理,需要严格的`理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
(三)总结--应用(3分钟)
1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
高二数学教案ppt篇18
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点:灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
高二数学教案ppt篇19
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
复习引入:
向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
高二数学教案ppt篇20
一、教学过程
1.复习。
反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。
求出函数y=x3的反函数。
2.新课。
先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):
教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。
生2:这是y=x3的反函数y=的图象。
师:对,但是怎么会得到这个图象,请大家讨论。
(学生展开讨论,但找不出原因。)
师:我们请生1再给大家演示一下,大家帮他找找原因。
(生1将他的制作过程重新重复了一次。)
生3:问题出在他选择的次序不对。
师:哪个次序?
生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。
师:是这样吗?我们请生1再做一次。
(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)
师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?
(学生再次陷入思考,一会儿有学生举手。)
师:我们请生4来告诉大家。
生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。
师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?
(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)
师:怎么由y=x3的图象得到y=的图象?
生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。
师:将横坐标与纵坐标互换?怎么换?
(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)
师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?
(学生重新开始观察这两个函数的图象,一会儿有学生举手。)
生6:我发现这两个图象应是关于某条直线对称。
师:能说说是关于哪条直线对称吗?
生6:我还没找出来。
(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)
学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。
生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。
师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。
(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)
还是有部分学生举手,因为他们画出了如下图象(图3):
教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,②也不是函数的图象。
最后教师与学生一起总结:
点(x,y)与点(y,x)关于直线y=x对称;
函数及其反函数的图象关于直线y=x对称。
二、反思与点评
1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。
2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。
计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。
在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。
当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。
3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。