高二数学的教案
编写教案有助于教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。优秀的高二数学的教案是什么样的?下面给大家带来高二数学的教案,供大家参考。
高二数学的教案篇1
[核心必知]
1.预习教材,问题导入
根据以下提纲,预习教材P6~P9,回答下列问题.
(1)常见的程序框有哪些?
提示:终端框(起止框),输入、输出框,处理框,判断框.
(2)算法的基本逻辑结构有哪些?
提示:顺序结构、条件结构和循环结构.
2.归纳总结,核心必记
(1)程序框图
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.
在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.
(2)常见的程序框、流程线及各自表示的功能
图形符号名称功能
终端框(起止框)表示一个算法的起始和结束
输入、输出框表示一个算法输入和输出的信息
处理框(执行框)赋值、计算
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”
流程线连接程序框
○连接点连接程序框图的两部分
(3)算法的基本逻辑结构
①算法的三种基本逻辑结构
算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.
②顺序结构
顺序结构是由若干个依次执行的步骤组成的.这是任何一个算法都离不开的基本结构,用程序框图表示为:
[问题思考]
(1)一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束吗?
提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束.
(2)顺序结构是任何算法都离不开的基本结构吗?
提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)程序框图的概念:;
(2)常见的程序框、流程线及各自表示的功能:;
(3)算法的三种基本逻辑结构:;
(4)顺序结构的概念及其程序框图的表示:.
问题背景:计算1×2+3×4+5×6+…+99×100.
[思考1]能否设计一个算法,计算这个式子的值.
提示:能.
[思考2]能否采用更简洁的方式表述上述算法过程.
提示:能,利用程序框图.
[思考3]画程序框图时应遵循怎样的规则?
名师指津:(1)使用标准的框图符号.
(2)框图一般按从上到下、从左到右的方向画.
(3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框.
(4)在图形符号内描述的语言要非常简练清楚.
(5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序.
讲一讲
1.下列关于程序框图中图形符号的理解正确的有()
①任何一个流程图必须有起止框;②输入框只能放在开始框后,输出框只能放在结束框前;③判断框是的具有超过一个退出点的图形符号;④对于一个程序框图来说,判断框内的条件是的.
A.1个B.2个C.3个D.4个
[尝试解答]任何一个程序必须有开始和结束,从而流程图必须有起止框,①正确.输入、输出框可以用在算法中任何需要输入、输出的位置,②错误.③正确.判断框内的条件不是的,④错误.故选B.
答案:B
画程序框图时应注意的问题
(1)画流程线不要忘记画箭头;
(2)由于判断框的退出点在任何情况下都是根据条件去执行其中的一种结果,而另一个则不会被执行,故判断框后的流程线应根据情况注明“是”或“否”.
练一练
1.下列关于程序框图的说法中正确的个数是()
①用程序框图表示算法直观、形象、容易理解;②程序框图能够清楚地展现算法的逻辑结构,也就是通常所说的“一图胜万言”;③在程序框图中,起止框是任何程序框图中不可少的;④输入和输出框可以在算法中任何需要输入、输出的位置.
A.1B.2C.3D.4
解析:选D由程序框图的定义知,①②③④均正确,故选D.
观察如图所示的内容:
[思考1]顺序结构有哪些结构特征?
名师指津:顺序结构的结构特征:
(1)顺序结构的语句与语句之间、框与框之间按从上到下的顺序执行,不会引起程序步骤的跳转.
(2)顺序结构是最简单的算法结构.
(3)顺序结构只能解决一些简单的问题.
[思考2]顺序结构程序框图的基本特征是什么?
名师指津:顺序结构程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.
(2)各程序框用流程线依次连接.
(3)处理框按计算机执行顺序沿流程线依次排列.
讲一讲
2.已知P0(x0,y0)和直线l:Ax+By+C=0,写出求点P0到直线l的距离d的算法,并用程序框图来描述.
[尝试解答]第一步,输入x0,y0,A,B,C;
第二步,计算m=Ax0+By0+C;
第三步,计算n=A2+B2;
第四步,计算d=mn;
第五步,输出d.
程序框图如图所示.
应用顺序结构表示算法的步骤:
(1)仔细审题,理清题意,找到解决问题的方法.
(2)梳理解题步骤.
(3)用数学语言描述算法,明确输入量,计算过程,输出量.
(4)用程序框图表示算法过程.
练一练
2.写出解不等式2x+1>0的一个算法,并画出程序框图.
解:第一步,将1移到不等式的右边;
第二步,不等式的两端同乘12;
第三步,得到x>-12并输出.
程序框图如图所示:
高二数学的教案篇2
教学目的:掌握圆的标准方程,并能解决与之有关的.问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:
1说出下列圆的方程
⑴圆心(3,-2)半径为5
⑵圆心(0,3)半径为3
2指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
3判断3x-4y-10=0和x2+y2=4的位置关系
4圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高二数学的教案篇3
【学习目标】
1、进一步体会数形结合的思想,提高分析问题解决问题的能力;
2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;
3、掌握诱导公式在求值和化简中的应用.
【学习重点】正切函数的诱导公式及应用
【学习难点】正切函数诱导公式的推导
【学习过程】
一、预习自学
1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系?
我们可以归纳出以下公式:
tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=
tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=
2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。
414【导学案】正切函数的诱导公式
给上述箭头上填上相应的文字
二、合作探究
探究1试运用414【导学案】正切函数的诱导公式,414【导学案】正切函数的诱导公式的正、余弦函数的诱导公式推证公式tan(414【导学案】正切函数的诱导公式和tan414【导学案】正切函数的诱导公式.
探究2若tan414【导学案】正切函数的诱导公式,借助三角函数定义求角414【导学案】正切函数的诱导公式的正弦函数值和余弦函数值.
探究3求414【导学案】正切函数的诱导公式的值.
三、达标检测
1下列各式成立的是()
Atan(414【导学案】正切函数的诱导公式=-tan414【导学案】正切函数的诱导公式Btan(414【导学案】正切函数的诱导公式=tan414【导学案】正切函数的诱导公式
Ctan(-414【导学案】正切函数的诱导公式)=-tan414【导学案】正切函数的诱导公式Dtan(2414【导学案】正切函数的诱导公式)=tan414【导学案】正切函数的诱导公式
2求下列三角函数数值
(1)tan(-414【导学案】正切函数的诱导公式(2)tan240414【导学案】正切函数的诱导公式414【导学案】正切函数的诱导公式(3)tan(-1574414【导学案】正切函数的诱导公式)
3化简求值
tan675414【导学案】正切函数的诱导公式+tan765414【导学案】正切函数的诱导公式+tan(-300414【导学案】正切函数的诱导公式)+tan(-690414【导学案】正切函数的诱导公式)+tan1080414【导学案】正切函数的诱导公式
四、课后延伸
求值:414【导学案】正切函数的诱导公式
高二数学的教案篇4
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2.4A组2、7题
高二数学的教案篇5
教材分析
因式分解是代数式的一种重要恒等变形。《数学课程标准》虽然降低了因式分解的特殊技巧的要求,也对因式分解常用的四种方法减少为两种,且公式法的应用中,也减少为两个公式,但丝毫没有否定因式分解的教育价值及其在代数运算中的重要作用。本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续—分式的化简、解方程等—恒等变形的基础,为数学交流提供了有效的途径。分解因式这一章在整个教材中起到了承上启下的作用。本章的教育价值还体现在使学生接受对立统一的观点,培养学生善于观察、善于分析、正确预见、解决问题的能力。
学情分析
通过探究平方差公式和运用平方差公式分解因式的活动中,让学生发表自己的观点,从交流中获益,让学生获得成功的体验,锻炼克服困难的意志建立自信心。
教学目标
1、在分解因式的过程中体会整式乘法与因式分解之间的联系。
2、通过公式a-b=(a+b)(a-b)的逆向变形,进一步发展观察、归纳、类比、等能力,发展有条理地思考及语言表达能力。
3、能运用提公因式法、公式法进行综合运用。
4、通过活动4,能将高偶指数幂转化为2次指数幂,培养学生的化归思想。
教学重点和难点
重点:灵活运用平方差公式进行分解因式。
难点:平方差公式的推导及其运用,两种因式分解方法(提公因式法、平方差公式)的综合运用。
高二数学的教案篇6
一.说教材
地位及重要性
函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
教学目标
(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;
(2)了解能用图形语言正确表述具有单调性的函数的图象特征;
(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;
(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
教学重难点
重点是对函数单调性的有关概念的本质理解。
难点是利用函数单调性的概念证明或判断具体函数的单调性。
二.说教法
根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三.说学法
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
四.说过程
通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。
高二数学的教案篇7
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、重点:指数函数的图像和性质
2、难点:底数a的变化对函数性质的影响,突破难点的关键是利用多媒体
动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?
S:--------
T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y=2x)
S,T:(讨论)这是球菌个数y关于分裂次数x的函数,该函数是什么样的形式(指数形式),
从函数特征分析:底数2是一个不等于1的正数,是常量,而指数x却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
C:定义:函数y=ax(a>0且a≠1)叫做指数函数,x∈R.。
问题1:为何要规定a>0且a≠1?
S:(讨论)
C:(1)当a<0时,ax有时会没有意义,如a=﹣3时,当x=
就没有意义;
(2)当a=0时,ax有时会没有意义,如x=-2时,
(3)当a=1时,函数值y恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数()
A、y=x2B、y=2x2C、y=2xD、y=-2x
高二数学的教案篇8
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区别与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果
例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变
量,分别说明下列集合所代表的随机事件:
(1){X=0}(2){X=1}
(3){X<2}(4){X>0}
变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;
小结(对标)
高二数学的教案篇9
教学目标
一、知识与技能
(1)理解并掌握弧度制的定义;
(2)领会弧度制定义的合理性;
(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;
(4)熟练地进行角度制与弧度制的换算;
(5)角的集合与实数集之间建立的一一对应关系.
(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.
二、过程与方法
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.
三、情态与价值
通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备
教学重难点
重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.
难点:理解弧度制定义,弧度制的运用.
高二数学的教案篇10
1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.
2.本节课要重点掌握的规律方法
(1)掌握画程序框图的几点注意事项,见讲1;
(2)掌握应用顺序结构表示算法的步骤,见讲2.
3.本节课的易错点
对程序框图的理解有误致错,如讲1.
课下能力提升(二)
[学业水平达标练]
题组1程序框图
1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()
A.连接点B.判断框C.流程线D.处理框
解析:选C流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.
2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()
A.abcdB.dcabC.bacdD.cbad
答案:D
3.如果输入n=2,那么执行如下算法的结果是()
第一步,输入n.
第二步,n=n+1.
第三步,n=n+2.
第四步,输出n.
A.输出3B.输出4
C.输出5D.程序出错
答案:C
题组2顺序结构
4.如图所示的程序框图表示的算法意义是()
A.边长为3,4,5的直角三角形面积
B.边长为3,4,5的直角三角形内切圆面积
C.边长为3,4,5的直角三角形外接圆面积
D.以3,4,5为弦的圆面积
解析:选B由直角三角形内切圆半径r=a+b-c2,知选B.
第4题图第5题图
5.(2016•东营高一检测)给出如图所示的程序框图:
若输出的结果为2,则①处的执行框内应填的是()
A.x=2B.b=2
C.x=1D.a=5
解析:选C∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.
6.写出如图所示程序框图的运行结果:S=________.
解析:S=log24+42=18.
答案:18
7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.
解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.
程序框图如图:
8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.
解:自然语言算法如下:
第一步,求f(3)的值.
第二步,求f(-5)的值.
第三步,将前两步的结果相加,存入y.
第四步,输出y.
程序框图:
[能力提升综合练]
1.程序框图符号“”可用于()
A.输出a=10B.赋值a=10
C.判断a=10D.输入a=1
解析:选B图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.
2.(2016•广州高一检测)如图程序框图的运行结果是()
A.52B.32
C.-32D.-1
解析:选C因为a=2,b=4,所以S=ab-ba=24-42=-32,故选C.
3.(2016•广州高一检测)如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()
A.9B.10
C.11D.12
解析:选C由题意知该算法是计算a1+a22的值.
∴3+a22=7,得a2=11,故选C.
4.(2016•佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()
A.x=1B.x=2
C.b=1D.b=2
解析:选B若b=6,则a=7,∴x3-1=7,∴x=2.
5.根据如图所示的程序框图所表示的算法,输出的结果是________.
解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.
答案:2
6.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.
图甲图乙
解析:图甲空白部分的面积为a2-π16a2,故图乙①中应填S=a2-π16a2.
答案:S=a2-π16a2
7.在如图所示的程序框图中,当输入的x的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.
(1)该程序框图解决的是一个什么问题?
(2)当输入的x的值为3时,求输出的f(x)的值.
(3)要想使输出的值,求输入的x的值.
解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.
(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).
因为f(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.
所以f(x)=-x2+4x.
则f(3)=-32+4×3=3,
所以当输入的x的值为3时,输出的f(x)的值为3.
(3)因为f(x)=-x2+4x=-(x-2)2+4,
所以当x=2时,f(x)max=4,
所以要想使输出的值,输入的x的值应为2.
8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:
(1)图框①中x=2的含义是什么?
(2)图框②中y1=ax+b的含义是什么?
(3)图框④中y2=ax+b的含义是什么?
(4)该程序框图解决的是怎样的问题?
(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.
解:(1)图框①中x=2表示把2赋值给变量x.
(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.
(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax+b的值,并把这个值赋给y2.
(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.
(5)y1=3,即2a+b=3.⑤
y2=-2,即-3a+b=-2.⑥
由⑤⑥,得a=1,b=1,
所以f(x)=x+1.
高二数学的教案篇11
一、教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,能熟练地求出分式有意义的条件.
二、重点、难点
1.重点:理解分式有意义的条件.
2.难点:能熟练地求出分式有意义的条件.
三、课堂引入
1.让学生填写P127[思考],学生自己依次填出:,,,.
2.学生看问题:一艘轮船在静水中的最大航速为30/h,它沿江以最大航速顺流航行90所用时间,与以最大航速逆流航行60所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为v/h.
轮船顺流航行90所用的时间为小时,逆流航行60所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
四、例题讲解
P128例1.当下列分式中的字母为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母的取值范围.
[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2.当为何值时,分式的值为0?
(1)(2)(3)
[分析]分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.
[答案](1)=0(2)=2(3)=1
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
(1)(2)(3)
3.当x为何值时,分式的值为0?
(1)(2)(3)
六、课后练习
1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.
(3)x与的差于4的商是.
2.当x取何值时,分式无意义?
3.当x为何值时,分式的值为0?
高二数学的教案篇12
教学目的:掌握圆的标准方程,并能解决与之有关的.问题
教学重点:圆的标准方程及有关运用
教学难点:标准方程的灵活运用
教学过程:
一、导入新课,探究标准方程
二、掌握知识,巩固练习
练习:⒈说出下列圆的方程
⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3
⒉指出下列圆的圆心和半径
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判断3x-4y-10=0和x2+y2=4的位置关系
⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程
三、引伸提高,讲解例题
例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)
练习:
1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。
例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。
例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)
四、小结练习P771,2,3,4
五、作业P811,2,3,4
高二数学的教案篇13
一、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1:任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2:平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3:任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4:复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.
高二数学的教案篇14
1.认真阅读教材
想只凭借课堂听讲就学好高中数学,这对大多数同学来说是不太可能的。要求我们在课下认真阅读教材,在阅读的同时还要勒于思考,只有这样才能深入理解知识及知识的联系。
2.理解、掌握、运用数学思想方法
数学思想方法是数学知识的精髓。初中阶段同学们对综合分析法、反证法等有了一些体会。与之相比,高中所涉及的数学思想方法要丰富得多。如:集合思想、函数思想、类比法、数学归纳法、分析法等常用的数学思想方法渗透于各部分知识中,都需要大家认真体会。
3.注意知识之间的联系
在日常的学习中要做到:
①注意思考不同数学知识之间的联系;
②注意例题与习题间的联系。弄清知识之间的逻辑关系,从而系统、灵活地掌握高中数学。
高二数学的教案篇15
教学目标
1、知识与技能
(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;
(2)能熟练运用正弦函数的性质解题。
2、过程与方法
通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
教学重难点
重点:正弦函数的性质。
难点:正弦函数的性质应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
【探究新知】
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1)正弦函数的定义域是什么?
(2)正弦函数的值域是什么?
(3)它的最值情况如何?
(4)它的正负值区间如何分?
(5)?(x)=0的解集是多少?
师生一起归纳得出:
1.定义域:y=sinx的定义域为R
2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业:习题1—4第3、4、5、6、7题.