教案吧 > 高中教案 > 高二教案 >

高二数学反思教案

时间: 新华 高二教案

教案是老师教什么,学生学什么,学生根据老师安排的教学内容进行学习、思考、模仿等过程。写好高二数学反思教案要注意什么?小编给大家分享高二数学反思教案,希望对大家有所帮助。

高二数学反思教案篇1

【教学目标】

知识目标:了解中心对称的概念,了解平行四边形是中心对称图形,掌握中心对称的性质。

能力目标:灵活运用中心对称的性质,会作关于已知点对称的中心对称图形。

情感目标:通过提问、讨论、动手操作等多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】

重点:中心对称图形的概念和性质。

难点:范例中既有新概念,分析又要仔细、透彻,是教学的难点。

关键:已知点A和点O,会作点Aˊ,使点Aˊ与点A关于点O成中心对称。

【课前准备】

叫一位剪纸爱好的学生,剪一幅类似书本第108页哪样的图案。

【教学过程】

一.复习

回顾七下学过的轴对称变换、平移变换、旋转变换、相似变换。

二.创设情境

用剪好的图案,让学生欣赏。师:这剪纸有哪些变换?生:轴对称变换。师:指出对称轴。生:(能结合图案讲)。生:还有旋转变换。师:指出旋转中心、旋转的角度?生:90°、180°、270°。

三、合作学习

1、把图1、图2发给每个学生,先探索图1:同桌的两位同学,把两个正三角形重合,然后把上面的正三角形绕点O旋转180°,观察旋转180°前后原图形和像的位置情况,请学生说出发现什么?生(讨论后):等边三角形旋转180°后所得的像与原图形不重合。

探索图形2:把两个平形四边形重合,然后把上面一个平形四边形绕点O旋转180°,学生动手后发现:平行四边形ABCD旋转180°后所得的像与原图形重合。师:为什么重合?师:作适当解释或学生自己发现:∵OA=OC,∴点A绕点O旋转180°与点C重合。同理可得,点C绕点O旋转180°与点A重合。点B绕点O旋转180°与点D重合。点D绕点O旋转180°与点B重合。

2、中心对称图形的概念:如果一个图形绕一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称(pointsymmetry)图形,这个点叫对称中心。

师:等边三角形是中心对称图形吗?生:不是。

3、想一想:等边三角形是轴对称图形吗?答:是轴对称图形。

平形四边形是轴对称图形吗?答:不是轴对称图形。

4、两个图形关于点O成中心对称的概念:如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称。

中心对称图形与两个图形成中心对称的不同点:前者是一个图形,后者是两个图形。

相同点:都有旋转中心,旋转180°后都会重合。

做一做:P109

5、根据中心对称图形的定义,得出中心对称图形的性质:

对称中心平分连结两个对称点的线段

通过中心对称的概念,得到P109性质后,主要是理解与应用。如右图,若A、B关于点O的成中心对称,∴点O是A、B的对称中心。

反之,已知点A、点O,作点B,使点A、B关于以O为对称中心的对称点。让学生练习,多数学生会做,若不会做,教师作适当的启发。

做P106例2,让学生思考1~2分钟,然后师生共同解答。

(P106)例2解:∵平行四边形是中心对称图形,O是对称中心,

EF经过点O,分别交AB、CD于E、F。

∴点E、F是关于点O的对称点。

∴OE=OF。

四、应用新知,拓展提高

例如图,已知△ABC和点O,作△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称。

分析:先让学生作点A关于以点O为对称中心的对称点Aˊ,

同理:作点B关于以点O为对称中心的对称点Bˊ,

作点C关于以点O为对称中心的对称点Cˊ。

∴△AˊBˊCˊ与△ABC关于点O成中心对称也会作。解:略。

课内练习P110

小结

今天我们学习了些什么?

1、中心对称图形的概念,两个图形成中心对称的概念,知道它们的相同点与不同点。

2、会作中心对称图形,关键是会作点A关于以O为对称中心的对称点Aˊ。

3、我们已学过的中心对称图形有哪些?

作业

P110A组1、2、3、4,B组5、6必做C组7选做。

高二数学反思教案篇2

1.本节课的重点是了解程序框图的含义,理解程序框图的作用,掌握各种程序框和流程线的画法与功能,理解程序框图中的顺序结构,会用顺序结构表示算法.难点是理解程序框图的作用及用顺序结构表示算法.

2.本节课要重点掌握的规律方法

(1)掌握画程序框图的几点注意事项,见讲1;

(2)掌握应用顺序结构表示算法的步骤,见讲2.

3.本节课的易错点

对程序框图的理解有误致错,如讲1.

课下能力提升(二)

[学业水平达标练]

题组1程序框图

1.在程序框图中,一个算法步骤到另一个算法步骤的连接用()

A.连接点B.判断框C.流程线D.处理框

解析:选C流程线的意义是流程进行的方向,一个算法步骤到另一个算法步骤表示的是流程进行的方向,而连接点是当一个框图需要分开来画时,在断开处画上连接点.判断框是根据给定条件进行判断,处理框是赋值、计算、数据处理、结果传送,所以A,B,D都不对.故选C.

2.a表示“处理框”,b表示“输入、输出框”,c表示“起止框”,d表示“判断框”,以下四个图形依次为()

A.abcdB.dcabC.bacdD.cbad

答案:D

3.如果输入n=2,那么执行如下算法的结果是()

第一步,输入n.

第二步,n=n+1.

第三步,n=n+2.

第四步,输出n.

A.输出3B.输出4

C.输出5D.程序出错

答案:C

题组2顺序结构

4.如图所示的程序框图表示的算法意义是()

A.边长为3,4,5的直角三角形面积

B.边长为3,4,5的直角三角形内切圆面积

C.边长为3,4,5的直角三角形外接圆面积

D.以3,4,5为弦的圆面积

解析:选B由直角三角形内切圆半径r=a+b-c2,知选B.

第4题图第5题图

5.(2016•东营高一检测)给出如图所示的程序框图:

若输出的结果为2,则①处的执行框内应填的是()

A.x=2B.b=2

C.x=1D.a=5

解析:选C∵b=2,∴2=a-3,即a=5.∴2x+3=5时,得x=1.

6.写出如图所示程序框图的运行结果:S=________.

解析:S=log24+42=18.

答案:18

7.已知半径为r的圆的周长公式为C=2πr,当r=10时,写出计算圆的周长的一个算法,并画出程序框图.

解:算法如下:第一步,令r=10.第二步,计算C=2πr.第三步,输出C.

程序框图如图:

8.已知函数f(x)=x2-3x-2,求f(3)+f(-5)的值,设计一个算法并画出算法的程序框图.

解:自然语言算法如下:

第一步,求f(3)的值.

第二步,求f(-5)的值.

第三步,将前两步的结果相加,存入y.

第四步,输出y.

程序框图:

[能力提升综合练]

1.程序框图符号“”可用于()

A.输出a=10B.赋值a=10

C.判断a=10D.输入a=1

解析:选B图形符号“”是处理框,它的功能是赋值、计算,不是输出、判断和输入,故选B.

2.(2016•广州高一检测)如图程序框图的运行结果是()

A.52B.32

C.-32D.-1

解析:选C因为a=2,b=4,所以S=ab-ba=24-42=-32,故选C.

3.(2016•广州高一检测)如图是一个算法的程序框图,已知a1=3,输出的b=7,则a2等于()

A.9B.10

C.11D.12

解析:选C由题意知该算法是计算a1+a22的值.

∴3+a22=7,得a2=11,故选C.

4.(2016•佛山高一检测)阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()

A.x=1B.x=2

C.b=1D.b=2

解析:选B若b=6,则a=7,∴x3-1=7,∴x=2.

5.根据如图所示的程序框图所表示的算法,输出的结果是________.

解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2.

答案:2

6.计算图甲中空白部分面积的一个程序框图如图乙,则①中应填________.

图甲图乙

解析:图甲空白部分的面积为a2-π16a2,故图乙①中应填S=a2-π16a2.

答案:S=a2-π16a2

7.在如图所示的程序框图中,当输入的x的值为0和4时,输出的值相等,根据该图和各小题的条件回答问题.

(1)该程序框图解决的是一个什么问题?

(2)当输入的x的值为3时,求输出的f(x)的值.

(3)要想使输出的值,求输入的x的值.

解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.

(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).

因为f(0)=0,f(4)=-16+4m,

所以-16+4m=0,

所以m=4.

所以f(x)=-x2+4x.

则f(3)=-32+4×3=3,

所以当输入的x的值为3时,输出的f(x)的值为3.

(3)因为f(x)=-x2+4x=-(x-2)2+4,

所以当x=2时,f(x)max=4,

所以要想使输出的值,输入的x的值应为2.

8.如图是为解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:

(1)图框①中x=2的含义是什么?

(2)图框②中y1=ax+b的含义是什么?

(3)图框④中y2=ax+b的含义是什么?

(4)该程序框图解决的是怎样的问题?

(5)当最终输出的结果是y1=3,y2=-2时,求y=f(x)的解析式.

解:(1)图框①中x=2表示把2赋值给变量x.

(2)图框②中y1=ax+b的含义是:该图框在执行①的前提下,即当x=2时,计算ax+b的值,并把这个值赋给y1.

(3)图框④中y2=ax+b的含义是:该图框在执行③的前提下,即当x=-3时,计算ax+b的值,并把这个值赋给y2.

(4)该程序框图解决的是求函数y=ax+b的函数值的问题,其中输入的是自变量x的值,输出的是对应x的函数值.

(5)y1=3,即2a+b=3.⑤

y2=-2,即-3a+b=-2.⑥

由⑤⑥,得a=1,b=1,

所以f(x)=x+1.

高二数学反思教案篇3

1.教材结构分析

《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

2.学情分析

圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

3.教学目标

(1)知识目标:①掌握圆的标准方程;

②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

③利用圆的标准方程解决简单的实际问题.

(2)能力目标:①进一步培养学生用代数方法研究几何问题的能力;

②加深对数形结合思想的理解和加强对待定系数法的运用;

③增强学生用数学的意识.

(3)情感目标:①培养学生主动探究知识、合作交流的意识;

②在体验数学美的过程中激发学生的学习兴趣.

根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

4.教学重点与难点

(1)重点:圆的标准方程的求法及其应用.

(2)难点:①会根据不同的已知条件求圆的标准方程;

②选择恰当的坐标系解决与圆有关的实际问题.

为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

【二】教法学法分析

1.教法分析为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

2.学法分析通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程.

下面我就对具体的教学过程和设计加以说明:

【三】教学过程与设计

整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

创设情境启迪思维深入探究获得新知应用举例巩固提高

反馈训练形成方法小结反思拓展引申

下面我从纵横两方面叙述我的教学程序与设计意图.

首先:纵向叙述教学过程

(一)创设情境——启迪思维

问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

(二)深入探究——获得新知

问题二1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

2.如果圆心在,半径为时又如何呢?

这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

(三)应用举例——巩固提高

I.直接应用内化新知

问题三1.写出下列各圆的标准方程:

(1)圆心在原点,半径为3;

(2)经过点,圆心在点.

2.写出圆的圆心坐标和半径.

我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

II.灵活应用提升能力

问题四1.求以点为圆心,并且和直线相切的圆的方程.

2.求过点,圆心在直线上且与轴相切的圆的方程.

3.已知圆的方程为,求过圆上一点的切线方程.

你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是什么?

我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

III.实际应用回归自然

问题五如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

(四)反馈训练——形成方法

问题六1.求过原点和点,且圆心在直线上的圆的标准方程.

2.求圆过点的切线方程.

3.求圆过点的切线方程.

接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

(五)小结反思——拓展引申

1.课堂小结

把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

①圆心为,半径为r的圆的标准方程为:

圆心在原点时,半径为r的圆的标准方程为:.

②已知圆的方程是,经过圆上一点的切线的方程是:.

2.分层作业

(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

3.激发新疑

问题七1.把圆的标准方程展开后是什么形式?

2.方程表示什么图形?

在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

横向阐述教学设计

(一)突出重点抓住关键突破难点

求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

(二)学生主体教师主导探究主线

本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

(三)培养思维提升能力激励创新

为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

高二数学反思教案篇4

1.本节课的重点是理解算法的概念,体会算法的思想,难点是掌握简单问题算法的表述.

2.本节课要重点掌握的规律方法

(1)掌握算法的特征,见讲1;

(2)掌握设计算法的一般步骤,见讲2;

(3)会设计实际问题的算法,见讲3.

3.本节课的易错点

(1)混淆算法的特征,如讲1.

(2)算法语言不规范致误,如讲3.

课下能力提升(一)

[学业水平达标练]

题组1算法的含义及特征

1.下列关于算法的说法错误的是()

A.一个算法的步骤是可逆的

B.描述算法可以有不同的方式

C.设计算法要本着简单方便的原则

D.一个算法不可以无止境地运算下去

解析:选A由算法定义可知B、C、D对,A错.

2.下列语句表达的是算法的有()

①拨本地电话的过程为:1提起话筒;2拨号;3等通话信号;4开始通话或挂机;5结束通话;

②利用公式V=Sh计算底面积为3,高为4的三棱柱的体积;

③x2-2x-3=0;

④求所有能被3整除的正数,即3,6,9,12,….

A.①②B.①②③

C.①②④D.①②③④

解析:选A算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.①②都各表达了一种算法;③只是一个纯数学问题,不是一个明确步骤;④的步骤是无穷的,与算法的有穷性矛盾.

3.下列各式中S的值不可以用算法求解的是()

A.S=1+2+3+4

B.S=12+22+32+…+1002

C.S=1+12+…+110000

D.S=1+2+3+4+…

解析:选DD中的求和不符合算法步骤的有限性,所以它不可以用算法求解,故选D.

题组2算法设计

4.给出下面一个算法:

第一步,给出三个数x,y,z.

第二步,计算M=x+y+z.

第三步,计算N=13M.

第四步,得出每次计算结果.

则上述算法是()

A.求和B.求余数

C.求平均数D.先求和再求平均数

解析:选D由算法过程知,M为三数之和,N为这三数的平均数.

5.(2016•东营高一检测)一个算法步骤如下:

S1,S取值0,i取值1;

S2,如果i≤10,则执行S3,否则执行S6;

S3,计算S+i并将结果代替S;

S4,用i+2的值代替i;

S5,转去执行S2;

S6,输出S.

运行以上步骤后输出的结果S=()

A.16B.25

C.36D.以上均不对

解析:选B由以上计算可知:S=1+3+5+7+9=25,答案为B.

6.给出下面的算法,它解决的是()

第一步,输入x.

第二步,如果x<0,则y=x2;否则执行下一步.

第三步,如果x=0,则y=2;否则y=-x2.

第四步,输出y.

A.求函数y=x2x<0,-x2x≥0的函数值

B.求函数y=x2x<0,2x=0,-x2x>0的函数值

C.求函数y=x2x>0,2x=0,-x2x<0的函数值

D.以上都不正确

解析:选B由算法知,当x<0时,y=x2;当x=0时,y=2;当x>0时,y=-x2.故选B.

7.试设计一个判断圆(x-a)2+(y-b)2=r2和直线Ax+By+C=0位置关系的算法.

解:算法步骤如下:

第一步,输入圆心的坐标(a,b)、半径r和直线方程的系数A、B、C.

第二步,计算z1=Aa+Bb+C.

第三步,计算z2=A2+B2.

第四步,计算d=z1z2.

第五步,如果d>r,则输出“相离”;如果d=r,则输出“相切”;如果d

8.某商场举办优惠促销活动.若购物金额在800元以上(不含800元),打7折;若购物金额在400元以上(不含400元)800元以下(含800元),打8折;否则,不打折.请为商场收银员设计一个算法,要求输入购物金额x,输出实际交款额y.

解:算法步骤如下:

第一步,输入购物金额x(x>0).

第二步,判断“x>800”是否成立,若是,则y=0.7x,转第四步;否则,执行第三步.

第三步,判断“x>400”是否成立,若是,则y=0.8x;否则,y=x.

第四步,输出y,结束算法.

题组3算法的实际应用

9.国际奥委会宣布2020年夏季奥运会主办城市为日本的东京.据《中国体育报》报道:对参与竞选的5个夏季奥林匹克运动会申办城市进行表决的操作程序是:首先进行第一轮投票,如果有一个城市得票数超过总票数的一半,那么该城市将获得举办权;如果所有申办城市得票数都不超过总票数的一半,则将得票最少的城市淘汰,然后进行第二轮投票;如果第二轮投票仍没选出主办城市,将进行第三轮投票,如此重复投票,直到选出一个主办城市为止,写出投票过程的算法.

解:算法如下:

第一步,投票.

第二步,统计票数,如果一个城市得票数超过总票数的一半,那么该城市就获得主办权,否则淘汰得票数最少的城市并转第一步.

第三步,宣布主办城市.

[能力提升综合练]

1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅、盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用()

A.13分钟B.14分钟

C.15分钟D.23分钟

解析:选C①洗锅、盛水2分钟+④用锅把水烧开10分钟(同时②洗菜6分钟+③准备面条及佐料2分钟)+⑤煮面条和菜共3分钟=15分钟.解决一个问题的算法不是的,但在设计时要综合考虑各个方面的因素,选择一种较好的算法.

2.在用二分法求方程零点的算法中,下列说法正确的是()

A.这个算法可以求方程所有的零点

B.这个算法可以求任何方程的零点

C.这个算法能求方程所有的近似零点

D.这个算法并不一定能求方程所有的近似零点

解析:选D二分法求方程零点的算法中,仅能求方程的一些特殊的近似零点(满足函数零点存在性定理的条件),故D正确.

3.(2016•青岛质检)结合下面的算法:

第一步,输入x.

第二步,判断x是否小于0,若是,则输出x+2,否则执行第三步.

第三步,输出x-1.

当输入的x的值为-1,0,1时,输出的结果分别为()

A.-1,0,1B.-1,1,0

C.1,-1,0D.0,-1,1

解析:选C根据x值与0的关系选择执行不同的步骤.

4.有如下算法:

第一步,输入不小于2的正整数n.

第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.

第三步,依次从2到n-1检验能不能整除n,若不能整除,则n满足条件.

则上述算法满足条件的n是()

A.质数B.奇数

C.偶数D.合数

解析:选A根据质数、奇数、偶数、合数的定义可知,满足条件的n是质数.

5.(2016•济南检测)输入一个x值,利用y=x-1求函数值的算法如下,请将所缺部分补充完整:

第一步:输入x;

第二步:________;

第三步:当x<1时,计算y=1-x;

第四步:输出y.

解析:以x-1与0的大小关系为分类准则知第二步应填当x≥1时,计算y=x-1.

答案:当x≥1时,计算y=x-1

6.已知一个算法如下:

第一步,令m=a.

第二步,如果b<m,则m=b.<p="">

第三步,如果c<m,则m=c.<p="">

第四步,输出m.

如果a=3,b=6,c=2,则执行这个算法的结果是________.

解析:这个算法是求a,b,c三个数中的最小值,故这个算法的结果是2.

答案:2

7.下面给出了一个问题的算法:

第一步,输入a.

第二步,如果a≥4,则y=2a-1;否则,y=a2-2a+3.

第三步,输出y的值.

问:(1)这个算法解决的是什么问题?

(2)当输入的a的值为多少时,输出的数值最小?最小值是多少?

解:(1)这个算法解决的是求分段函数

y=2a-1,a≥4,a2-2a+3,a<4的函数值的问题.

(2)当a≥4时,y=2a-1≥7;

当a<4时,y=a2-2a+3=(a-1)2+2≥2,

∵当a=1时,y取得最小值2.

∴当输入的a值为1时,输出的数值最小为2.

8.“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人.

解:第一步,首先确定最小的满足除以3余2的正整数:2.

第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,….

第三步,在上列数中确定最小的满足除以5余3的正整数:8.

第四步,然后在自然数内在8的基础上依次加上15,得到8,23,38,53,….

第五步,在上列数中确定最小的满足除以7余4的正整数:53.

即士兵至少有53人.

高二数学反思教案篇5

一.说教材

地位及重要性

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;

(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

二.说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

高二数学反思教案篇6

一、问题情境

我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

二、学生活动

问题1:任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

问题2:平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

问题3:任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

问题4:复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

三、建构数学

1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

高二数学反思教案篇7

一、教学过程

1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课。

先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):

教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=x3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

师:我们请生1再给大家演示一下,大家帮他找找原因。

生3:问题出在他选择的次序不对。

师:哪个次序?

生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)

师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?

师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?

(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)

师:怎么由y=x3的图象得到y=的图象?

生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

师:将横坐标与纵坐标互换?怎么换?

师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?

生6:我发现这两个图象应是关于某条直线对称。

师:能说说是关于哪条直线对称吗?

生6:我还没找出来。

学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。

生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。

师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。

(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)

教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,也不是函数的图象。

最后教师与学生一起总结:

点(x,y)与点(y,x)关于直线y=x对称;

函数及其反函数的图象关于直线y=x对称。

二、反思与点评

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

高二数学反思教案篇8

【学习目标】

1、进一步体会数形结合的思想,提高分析问题解决问题的能力;

2、能借助正余弦函数的诱导公式推导出正切函数的诱导公式;

3、掌握诱导公式在求值和化简中的应用.

【学习重点】正切函数的诱导公式及应用

【学习难点】正切函数诱导公式的推导

【学习过程】

一、预习自学

1.观察课本38页图1-46,当-414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式<414【导学案】正切函数的诱导公式时,角414【导学案】正切函数的诱导公式与角2414【导学案】正切函数的诱导公式的正切函数值有什么关系?

我们可以归纳出以下公式:

tan(2414【导学案】正切函数的诱导公式)=tan(-414【导学案】正切函数的诱导公式)=tan(2414【导学案】正切函数的诱导公式)=

tan(414【导学案】正切函数的诱导公式=tan(414【导学案】正切函数的诱导公式=

2.我们可以利用诱导公式,将任意角的三角函数问题转化为锐角三角函数的问题,参考下面的框图,想想每次变换应该运用哪些公式。

414【导学案】正切函数的诱导公式

给上述箭头上填上相应的文字

二、合作探究

探究1试运用414【导学案】正切函数的诱导公式,414【导学案】正切函数的诱导公式的正、余弦函数的诱导公式推证公式tan(414【导学案】正切函数的诱导公式和tan414【导学案】正切函数的诱导公式.

探究2若tan414【导学案】正切函数的诱导公式,借助三角函数定义求角414【导学案】正切函数的诱导公式的正弦函数值和余弦函数值.

探究3求414【导学案】正切函数的诱导公式的值.

三、达标检测

1下列各式成立的是()

Atan(414【导学案】正切函数的诱导公式=-tan414【导学案】正切函数的诱导公式Btan(414【导学案】正切函数的诱导公式=tan414【导学案】正切函数的诱导公式

Ctan(-414【导学案】正切函数的诱导公式)=-tan414【导学案】正切函数的诱导公式Dtan(2414【导学案】正切函数的诱导公式)=tan414【导学案】正切函数的诱导公式

2求下列三角函数数值

(1)tan(-414【导学案】正切函数的诱导公式(2)tan240414【导学案】正切函数的诱导公式414【导学案】正切函数的诱导公式(3)tan(-1574414【导学案】正切函数的诱导公式)

3化简求值

tan675414【导学案】正切函数的诱导公式+tan765414【导学案】正切函数的诱导公式+tan(-300414【导学案】正切函数的诱导公式)+tan(-690414【导学案】正切函数的诱导公式)+tan1080414【导学案】正切函数的诱导公式

四、课后延伸

求值:414【导学案】正切函数的诱导公式

高二数学反思教案篇9

1.认真阅读教材

想只凭借课堂听讲就学好高中数学,这对大多数同学来说是不太可能的。要求我们在课下认真阅读教材,在阅读的同时还要勒于思考,只有这样才能深入理解知识及知识的联系。

2.理解、掌握、运用数学思想方法

数学思想方法是数学知识的精髓。初中阶段同学们对综合分析法、反证法等有了一些体会。与之相比,高中所涉及的数学思想方法要丰富得多。如:集合思想、函数思想、类比法、数学归纳法、分析法等常用的数学思想方法渗透于各部分知识中,都需要大家认真体会。

3.注意知识之间的联系

在日常的学习中要做到:

①注意思考不同数学知识之间的联系;

②注意例题与习题间的联系。弄清知识之间的逻辑关系,从而系统、灵活地掌握高中数学。

高二数学反思教案篇10

一、说教材:

1、地位、作用和特点:

《___》是高中数学课本第__册(_修)的第__章“___”的第__节内容。

本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《__》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是__;特点之二是:___。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:A、B、C

(2)能力目标:A、B、C

(3)德育目标:A、B

教学的重点和难点:

(1)教学重点:

(2)教学难点:

二、说教法:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学__真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学反馈发展

三、说学法:

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

四、教学过程:

(一)、课题引入:

教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学的有关情况。)激发学生的探究__,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

五、板书设计:

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

六、说课综述:

以上是我对《___》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高二数学反思教案篇11

活动1、提出问题

一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的草皮吗?

问题:10+20是什么运算?

活动2、探究活动

下列3个小题怎样计算?

问题:1)-还能继续往下合并吗?

2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?

二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。

活动3

练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)

创设问题情景,引起学生思考。

学生回答:这个运动场要准备(10+20)平方米的草皮。

教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。

我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。

教师引导验证:

①设=,类比合并同类项或面积法;

②学生思考,得出先化简,再合并的解题思路

③先化简,再合并

学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。

教师巡视、指导,学生完成、交流,师生评价。

提醒学生注意先化简成最简二次根式后再判断。

高二数学反思教案篇12

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1.本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2.教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1.以故事形式入题

2多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。

这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线平行”的条件与结论各是什么?

2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

5984