高三物理教案
编写教案可以帮助教师养成严谨的工作态度和认真的办事习惯,同时可以使备课更加充分,上课有条不紊。如何撰写优秀的高三物理教案?这里分享一些高三物理教案写作案例,供大家参考。
高三物理教案篇1
1、知识与技能
(1)通过实验了解光电效应的实验规律。
(2)知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应,了解光子的动量
2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。
3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。
教学重点:光电效应的实验规律
教学难点:爱因斯坦光电效应方程以及意义
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备
(一)引入新课
回顾前面的学习,总结人类对光的本性的认识的发展过程?
(多媒体投影,见课件。)光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。
(二)进行新课
1、光电效应
实验演示1:(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么?(表明锌板在射线照射下失去电子而带正电)
概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。
2、光电效应的实验规律
(1)光电效应实验
如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。光电子在电场作用下形成光电流。
概念:遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。
根据动能定理,有:
(2)光电效应实验规律
①光电流与光强的关系:饱和光电流强度与入射光强度成正比。
②截止频率νc----极限频率,对于每种金属材料,都相应的有一确定的截止频率νc,当入射光频率ν>νc时,电子才能逸出金属表面;当入射光频率ν<νc时,无论光强多大也无电子逸出金属表面。
③光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s。
3、光电效应解释中的疑难
经典理论无法解释光电效应的实验结果。
经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。
光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。
4、爱因斯坦的光量子假设
(1)内容
光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E=hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。
(2)爱因斯坦光电效应方程
在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:
W0为电子逸出金属表面所需做的功,称为逸出功。Wk为光电子的最大初动能。
(3)爱因斯坦对光电效应的解释
①光强大,光子数多,释放的光电子也多,所以光电流也大。
②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。
③从方程可以看出光电子初动能和照射光的频率成线性关系
④从光电效应方程中,当初动能为零时,可得极限频率:
爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。
5、光电效应理论的验证
美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。
6、展示演示文稿资料:爱因斯坦和密立根
由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。
密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。
点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。
光电效应在近代技术中的应用
(1)光控继电器
可以用于自动控制,自动计数、自动报警、自动跟踪等。
(2)光电倍增管
可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。
高三物理教案篇2
一、磁化和退磁
说明:缝衣针、螺丝刀等钢铁物体,与磁铁接触后就会显示出磁性,我们把钢性材料与磁铁接触后显示出磁性的现象称之为磁化
说明:原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的作用,就会失去磁性,这种现象叫做退磁
说明:铁、钴、镍以及它们的合金.还有一些氧化物,磁化后的磁性比其他物质强得多,这些物质叫做铁磁性物质,也叫强磁性物质
二、磁性材料的发展
阅读
三、磁记录
阅读
四、地球磁场留下的记录
阅读
五、磁性材料
一.磁化和退磁
1、磁化:钢性材料与磁铁接触后显示出磁性的现象
2、退磁:原来有磁性的物体,经过高温、剧烈震动或者逐渐减弱的交变磁场的作用,就会失去磁性
3、铁磁性物质(强磁性物质):铁、钴、镍以及它们的合金.还有一些氧化物,磁化后的磁性比较强
4、磁化和退磁解释:物质是由原子构成的,原子是由原子核和电子构成,电子绕核旋转,这就相当于一个小磁体,称之为磁畴,磁化前,各个磁畴的磁化方向不同,杂乱无章地混在一起,各个磁畴的作用在宏观上互相抵消,物体对外不显磁性。磁化过程中,由于外磁场的影响,磁畴的磁化方向有规律地排列起来,使得磁场大大加强。这个过程就是磁化的过程,高温下,磁性材料的磁畴会被破坏.在受到剧烈震动时,磁畴的排列会被打乱,这些悄况下材料都会产生退磁现象
5、硬磁性材料:磁化后撤去外磁场,物体具有很强的剩磁
软磁性材料:磁化后磁畴的磁化的方向又变得杂乱,物体没有明显的剩磁
二.磁性材料的发展
三.磁记录
四.地球磁场留下的记录
高三物理教案篇3
高三物理总复习的目的是透过总复习,使学生掌握物理概念及其相互关系,熟练掌握物理规律、公式及应用,总结解题方法与技巧,从而提高分析问题和解决问题的潜力。为了达成以上目的,我们在高三教学过程中应做到以下几点:
一、抓住考纲、回归课本
1、“考纲”即“考试说明”,它是考试出题的依据,因此在高考复习过程中应紧紧抓住考纲逐一落实考点,用考纲来检查学生对知识点的掌握状况,才能做到全面无遗漏;要对照考纲一个一个知识点落实,从考纲对知识点的要求的程度对照学生掌握的状况看是否达标。
2、在复习备考时,应以课本为本,充分发挥课本的主导作用,在复习过程中,应指导学生带着问题看书,研读教材资料,使其看书有必须的目的性,便于弥补自已基础知识弱点,融会贯通教材的基础知识结构,使其回归课本目的性强,才能充分利用时间,真正到达查缺补漏的目的。
3、正确处理好“热点”与“冷点”。最后阶段复习中,不仅仅要注意考纲中的热点问题,在看书时要重视考纲中的重点资料,同时更要关心所谓的“冷点”。因为前一轮复习中在综合试卷里所谓的重点知识、热点知识出现的机会较多,通常都进行了反复的强化,恰恰在所谓的“冷点”的地方出题较少,重复的机会少,有的甚至没有考查过,所以在今后的教学中要有必要的给以加强。如:今年高考实验题对示波器的考查。以后应注意在“冷点”上的复习,以防止在高考当中出现一些知识上的死角。
二、夯实基础,培养潜力
在高考复习备考时,要处理好“基础”与“潜力”的关系,个性是在第一阶段的复习过程中,重点是复习基本概念、基本规律及其应用,基本解题方法与技巧等基础知识。但在夯实基础的同时还应当有目的的加强以下几种潜力的培养。
1.加强信息迁移问题的训练,提高阅读潜力、理解潜力和分析问题的潜力。信息迁移问题一般都是给出一段文字或图片信息,要求透过阅读该信息去回答或解决一些物理问题,信息迁移问题着重考查学生临场阅读,提取信息和进行信息加工、处理,以及灵活运动基本知识分析和解决问题的潜力,如:给出有关磁悬浮列车的文字资料和图片,要求学生透过阅读资料,去回答和分析有关磁悬浮列车的问题。
2.加强科技应用问题的训练,提高运用物理知识去分析和解决实际问题的潜力。纵观近年的高考卷,生活、生产、科学研究中的物理问题已成为高考中的热点。平常的物理教学强调理论的完整性,系统性,缺少与科学技术和生活实际的联系,在物理教学及有关问题训练时,往往是简化后的物理对象、场景,把所有物理问题变成了理想化、模型化,而实际生活问题则往往不同,它并不明显给出简化或理想化的对象及物理场景,因而需要培养学生学会抽取物理对象和物理场景的环节。
3.加强实验技能训练,提高实验潜力。推荐在高三复习阶段重做高中阶段已做过的重要实验,开放实验室,但不要简单重复。要求学生用新视角重新观察已做过的实验,要有新的发现和收获,同时要求在实验中做到“一个了解、五个会”。即了解实验目的、步骤和原理;会控制条件(控制变量)、会使用仪器、会观察分析、会解释结果得出相应结论,并会根据原理设计简单的实验方案。以实验带复习,设计新的实验。进一步完善认知结构,明确认识结论、过程和质疑三要素,为进一步培养学生科学精神打下基础。学会正确、简练地表述实验现象、实验过程和结论,个性是书面的表述。
4.加强创新思维训练,提高创新思维潜力。创新思维题是近几年高考物理试题或理科综合潜力测试题中考查学生能否寻求独特而新颖的,并具备社会价值的思维方法解决尚无先例的问题的潜力,这些题大多数属于开放性的实际应用题,创新思维的主要成份是发散性思维和集中性思维。所谓发散性思维是一种不依常规,寻求尽可能多种多样的答案的思维,它具有流畅性、变通性和独创性的特点;而集中性思维则是依据已有的信息和各种设想,朝着问题解决的方向求得最佳方案和结果的思维操作过程,发散性思维以寻求解决问题的各种可能性为主,而集中性思维则在这些可能的途径中选取和比较出最优的解决方案,两者相互联系,缺一不可。
三、做好归纳,注重综合
1、要善于归纳总结,不仅仅要构成比较完整的知识体系,而且对物理习题最好能构成自己熟悉的解题体系,从而在高考中应对陌生的试题能把握主动。
2、注重学科内知识的综合,重点应放在力学、电磁学的综合,加强训练、归纳、总结,反思、提高分析综合及用数学处理物理问题的潜力。
四、重视训练,注意答题的规范化
1、平时训练中要让学生抓住自己有困难的问题认真分析,针对性的训练。最后的阶段应避开难题、做少量的练习。要选取难度适中,自己“跳一跳够得着”的题目和一些基础题目来做,要保证质量和做题的效率及情绪和信心,透过做题持续良好的解题潜力。
2、规范答题。物理试题的解答比较重视物理过程和步骤,这就要求在教学过程中强化学生在解答物理题时要规范。解答计算题时注意以下几方面:要有必要的图示,要有必要的文字说明,要有方程式和必要的演算步骤,计算结果要思考有效数字和单位。让学生在练习时尤其在做高考题时要仔细看一看计算题就应怎样样表述,答案的评分标准如何,力争做到能做对的题目就必须不丢分。
总之,在高考物理复习过程中,必须要有周密的计划、科学的方法、得力的措施,只有这样,才能取得高考的胜利。
高三物理教案篇4
人类从很早就认识了摩擦起电的现象,例如公元1世纪,我国学者王充在《论衡》一书中就写下了“顿牟掇芥”一语,指的是用玳琩的壳吸引轻小物体。
后来人们认识到摩擦后的物体所带的电荷有两种:用丝绸摩擦过的玻璃棒的所带的电荷是一种,用毛皮摩擦过的硬橡胶棒所带的电荷是另一种。同种电荷相互排斥,异种电荷相互吸引。
一、电荷:
1、把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷.把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷.
2、电荷量:C
“做一做”验电器与静电计
为了判断物体是否带电以及所带电荷的种类和多少,从18世纪起,人们经常使用一种叫验电器的简单装置:玻璃瓶内有两片金属箔,用金属丝挂在一条导体棒的下端,棒的上端通过瓶塞从瓶口伸出(图甲)。如果把金属箔换成指针,并用金属做外壳,这样的验电器又叫静电计(图乙)
问:是否只有当带电体与导体棒的上端直接接触时,金属箔片才开始张开?解释看到的现象?
1、摩擦起电
摩擦起电的原因:不同物质的原子核束缚电子的能力不同.特别是离核较远的电子受到的束缚较小。当两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体。实质:电子的转移.结果:两个相互摩擦的物体带上了等量异种电荷.得到电子:带负电;失去电子:带正电问:摩擦起电有没有创造了电荷?
生:没有,摩擦起电是带电粒子(如电子)从一个物体转移到另一个物体。师:很多物质都会由于摩擦而带电,是否还存在其它的使物体起电的方式?在学习新的起电方式之前,我们先来学习金属导体模型。
金属导体模型也是一个物理模型P3(动画演示)
自由电子:脱离原子核的束缚而在金属中自由活动。
带正电的离子:失去电子的原子,都在自己的平衡位置上振动而不移动。
2、感应起电
演示取一对用绝缘柱支持的导体A和B,使它们
彼此接触。起初它们不带电,帖在下部的金属箔是闭合的。
①把带正电荷的球C移近彼此接触的异体A,B(参见课本图1.1-1).金属箔有什么变化?
实验现象:可以看到A,B上的金属箔都张开了,表示A,B都带上了电荷.提出静电感应概念:
(1)静电感应:把电荷移近不带电的导体,可以使导体带电的现象。
规律:近端感应异种电荷,远端感应同种电荷
(2)利用静电感应使物体带电,叫做感应起电.
(3)提出问题:静电感应的原因?
带领学生分析物质的微观分子结构,分析起电的本质原因:把带电的球C移近金属导体A和B时,由于同种电荷相互排斥,异种电荷相互吸引,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷。如上面的这个演示实验中,导体A和B带上了等量的异种电荷.
①演示
②如果先把C移走,金属箔又有什么变化?实验现象:A和B上的金属箔就会闭合.
③如果先把A和B分开,然后移开C,金属箔又有什么变化?
实验现象:可以看到金属箔仍张开,表明A和B仍带有电荷;
④如果再让A和B接触,金属箔又有什么变化?
实验现象:金属箔就会闭合,表明他们就不再带电.这说明A和B分开后所带的是异种等量的电荷,重新接触后等量异种电荷发生中和.
问:感应起电有没有创造了电荷?
生:没有。感应起电而是使物体中的正负电荷分开,是电荷从物体的一部分转移到另一部分。感应起电也不是创造了电荷。
师:无论是哪种起电方式,其本质都是将正、负电荷分开,使电荷发生转移,并不是创造电荷.
得出电荷守恒定律.三、电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分.
师:电荷守恒定律是物理学中重要的基本定律之一。
师:迄今为止,科学家实验发现的最小电荷量就是电子所带的电荷量。质子、正电子所带的电荷量与它相同,但符号相反。人们把这个最小的电荷量叫做元电荷。元电荷:电子所带的电荷量,用e表示。e=1.60×10-19C注意:迄今为止,发现所有带电体的电荷量或者等于e,或者等于e的整数倍。就是说,电荷量是不能连续变化的物理量。
(三)小结
二、电荷守恒定律:
电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
一个与外界没有电荷交换的系统,电荷的代数和总是保持不变。
三、几个基本概念
电荷量──电荷的多少叫做电荷量。符号:Q或q单位:库仑符号:C。
元电荷──电子所带的电荷量,用e表示,e=1.60×10C。
注意:所有带电体的电荷量或者等于e,或者等于e的整数倍。电荷量是不能连续变化的物理量。最早由美国物理学家密立根测得
比荷──电荷的电荷量q与其质量m的比值q/m,符号:C/㎏。
静电感应和感应起电──当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离一端带同号电荷。这种现象叫做静电感应。利用静电感应使金属导体带电的过程叫做感应起电。
高三物理教案篇5
生活中的圆周运动
整体设计
圆周运动是生活中普遍存在的一种运动.通过一些生活中存在的圆周运动,让学生理解向心力和向心加速度的作用,知道其存在的危害及如何利用.通过对航天器中的失重想象让学生理解向心力是由物体所受的合力提供的,任何一种力都有可能提供物体做圆周运动的向心力.通过对离心运动的学习让学生知道离心现象,并能充分利用离心运动且避免因离心运动而造成的危害.本节内容着重于知识的理解应用,学生对于一些内容不易理解,因此在教学时注意用一些贴近学生的生活实例或是让学生通过动手实验来得到结论.注意引导学生应用牛顿第二定律和有关向心力知识分析实例,使学生深刻理解向心力的基础知识;熟练掌握应用向心力知识分析两类圆周运动模型的步骤和方法.锻炼学生观察、分析、抽象、建模的解决实际问题的方法和能力;培养学生的主动探索精神、应用实践能力和思维创新意识.
教学重点
1.理解向心力是一种效果力.
2.在具体问题中能找到向心力,并结合牛顿运动定律求解有关问题.
教学难点
1.具体问题中向心力的来源.
2.关于对临界问题的讨论和分析.
3.对变速圆周运动的理解和处理.
课时安排
1课时
三维目标
知识与技能
1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力,会在具体问题中分析向心力的来源.
2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例.
3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度.
过程与方法
1.通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生的分析和解决问题的能力.
2.通过匀速圆周运动的规律也可以在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力.
3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力.
情感态度与价值观
培养学生的应用实践能力和思维创新意识;运用生活中的几个事例,激发学生的学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念.
教学过程
导入新课
情景导入
赛车在经过弯道时都会减速,如果不减速赛车就会出现侧滑,从而引发事故.大家思考一下我们如何才能使赛车在弯道上不减速通过?
课件展示自行车赛中自行车在通过弯道时的情景.
根据展示可以看出自行车在通过弯道时都是向内侧倾斜,这样的目的是什么?赛场有什么特点?学生讨论
结论:赛车和自行车都在做圆周运动,都需要一个向心力.而向心力是车轮与地面的摩擦力提供的,由于摩擦力的大小是有限的,当赛车与地面的摩擦力不足以提供向心力时赛车就会发生侧滑,发生事故.因此赛车在经过弯道时要减速行驶.而自行车在经过弯道时自行车手会将身体向内侧倾斜,这样身体的重力就会产生一个向里的分力和地面的摩擦力一起提供自行车所需的向心力,因此自行车手在经过弯道时没有减速.同样道理摩托车赛中摩托车在经过弯道时也不减速,而是通过倾斜摩托车来达到同样的目的.
下面大家考虑一下,火车在通过弯道时也不减速,那么我们如何来保证火车的安全呢?
复习导入
1.向心加速度的公式:an==rω2=r()2.
2.向心力的公式:Fn=man=m=mrω2=mr()2.
推进新课
一、铁路的弯道
课件展示观察铁轨和火车车轮的形状.
讨论与探究
火车转弯特点:火车转弯是一段圆周运动,圆周轨道为弯道所在的水平轨道平面.
受力分析,确定向心力(向心力由铁轨和车轮轮缘的相互挤压作用产生的弹力提供).
缺点:向心力由铁轨和车轮轮缘的相互挤压作用产生的弹力提供,由于火车质量大,速度快,由公式F向=mv2/r,向心力很大,对火车和铁轨损害很大.
问题:如何解决这个问题呢?(联系自行车通过弯道的情况考虑)
事实上在火车转弯处,外轨要比内轨略微高一点,形成一个斜面,火车受的重力和支持力的合力提供向心力,对内外轨都无挤压,这样就达到了保护铁轨的目的.
强调说明:向心力是水平的.
F向=mv02/r=F合=mgtanθ
v0=(1)当v=v0,F向=F合
内外轨道对火车两侧车轮轮缘都无压力.
(2)当v>v0,F向>F合时
外轨道对外侧车轮轮缘有压力.
(3)当v
内轨道对内侧车轮轮缘有压力.
要使火车转弯时损害最小,应以规定速度转弯,此时内外轨道对火车两侧车轮轮缘都无压力.
二、拱形桥
课件展示交通工具(自行车、汽车等)过拱形桥.
问题情境:
质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径为R,试画出受力分析图,分析汽车通过桥的点时对桥的压力.通过分析,你可以得出什么结论?
画出汽车的受力图,推导出汽车对桥面的压力.
思路:在点,对汽车进行受力分析,确定向心力的来源;由牛顿第二定律列出方程求出汽车受到的支持力;由牛顿第三定律求出桥面受到的压力FN′=G可见,汽车对桥的压力FN′小于汽车的重力G,并且,压力随汽车速度的增大而减小.
思维拓展
汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大还是小呢?学生自主画图分析,教师巡回指导.
课堂训练
一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,重力加速度g=10m/s2.求:
(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?
(2)若桥面为凸形,汽车以10m/s的速度通过桥面点时,对桥面压力是多大?
(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?
解答:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力N1和向下的重力G=mg,如图所示.圆弧形轨道的圆心在汽车上方,支持力N1与重力G=mg的合力为N1-mg,这个合力就是汽车通过桥面最低点时的向心力,即F向=N1-mg.由向心力公式有:N1-mg=解得桥面的支持力大小为
N1=+mg=(2000×+2000×10)N=2.89×104N
根据牛顿第三定律,汽车对桥面最低点的压力大小是2.98×104N.
(2)汽车通过凸形桥面点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力G=mg和桥面向上的支持力N2,如图所示.圆弧形轨道的圆心在汽车的下方,重力G=mg与支持力N2的合力为mg-N2,这个合力就是汽车通过桥面顶点时的向心力,即F向=mg-N2,由向心力公式有mg-N2=解得桥面的支持力大小为N2=mg=(2000×10-2000×)N=1.78×104N
根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为1.78×104N.
(3)设汽车速度为vm时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力G=mg就是汽车驶过桥顶点时的向心力,即F向=mg,由向心力公式有mg=解得:vm=m/s=30m/s
汽车以30m/s的速度通过桥面顶点时,对桥面刚好没有压力.
说一说
汽车不在拱形桥的点或最低点时,它的运动能用上面的方法求解吗?
汽车受到重力和垂直于支持面的支持力,将重力分解为平行于支持面和垂直于支持面的两个分力,这样,在垂直于支持面的方向上重力的分力和支持力的合力提供向心力.三、航天器中的失重现象
引导学生阅读教材“思考与讨论”中提出的问题情境,用学过的知识加以分析,发表自己的见解.上面“思考与讨论”中描述的情景其实已经实现,不过不是在汽车上,而是在航天飞行中.
假设宇宙飞船质量为M,它在地球表面附近绕地球做匀速圆周运动,其轨道半径近似等于地球半径R,航天员质量为m,宇宙飞船和航天员受到的地球引力近似等于他们在地面的重力.试求座舱对宇航员的支持力.此时飞船的速度多大?
通过求解,你可以得出什么结论?
其实在任何关闭了发动机,又不受阻力的飞行器中,都是一个完全失重的环境.其中所有的物体都处于完全失重状态.
四、离心运动
问题:做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?
结论:如果向心力突然消失,物体由于惯性,会沿切线方向飞出去.如果物体受的合力不足以提供向心力,物体虽不能沿切线方向飞出去,但会逐渐远离圆心.这两种运动都叫做离心运动.
结合生活实际,举出物体做离心运动的例子.在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?
参考答案:①洗衣机脱水②棉砂糖③制作无缝钢管④魔盘游戏⑤汽车转弯⑥转动的砂轮速度不能过大
汽车转弯时速度过大,会因离心运动造成交通事故
水滴的离心运动洗衣机的脱水筒
总结:1.提供的外力F超过所需的向心力,物体靠近圆心运动.
2.提供的外力F恰好等于所需的向心力,物体做匀速圆周运动.
3.提供的外力F小于所需的向心力,物体远离圆心运动.
4.物体原先在做匀速圆周运动,突然间外力消失,物体沿切线方向飞出.
例1如图所示,杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,大家讨论一下满足什么条件水才能从水桶中流出来.若水的质量m=0.5kg,绳长l=60cm,求:
(1)点水不流出的最小速率.
(2)水在点速率v=3m/s时,水对桶底的压力.
解析:(1)在点水不流出的条件是重力不大于水做圆周运动所需要的向心力
即mg≤则所求最小速率v0=m/s=2.42m/s.
(2)当水在点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为FN,由牛顿第二定律有
FN+mg=FN=-mg=2.6N
由牛顿第三定律知,水对桶底的作用力FN′=FN=2.6N,方向竖直向上.
答案:(1)2.42m/s(2)2.6N,方向竖直向上
提示:抓住临界状态,找出临界条件是解决这类极值问题的关键.
课外思考:若本题中将绳换成轻杆,将桶换成球,上面所求的临界速率还适用吗?
课堂训练
1.如图所示,在水平固定的光滑平板上,有一质量为M的质点P,与穿过中央小孔H的轻绳一端连着.平板与小孔是光滑的,用手拉着绳子下端,使质点做半径为a、角速度为ω1的匀速圆周运动.若绳子迅速放松至某一长度b而拉紧,质点就能在以半径为b的圆周上做匀速圆周运动.求质点由半径a到b所需的时间及质点在半径为b的圆周上运动的角速度.
解析:质点在半径为a的圆周上以角速度ω1做匀速圆周运动,其线速度为va=ω1a.突然松绳后,向心力消失,质点沿切线方向飞出以va做匀速直线运动,直到线被拉直,如图所示.质点做匀速直线运动的位移为s=,则质点由半径a到b所需的时间为:t=s/va=/(ω1a).
当线刚被拉直时,球的速度为va=ω1a,把这一速度分解为垂直于绳的速度vb和沿绳的速度v′.在绳绷紧的过程中v′减为零,质点就以vb沿着半径为b的圆周做匀速圆周运动.根据相似三角形得,即.则质点沿半径为b的圆周做匀速圆周运动的角速度为ω2=a2ω1/b2.
2.一根长l=0.625m的细绳,一端拴一质量m=0.4kg的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:
(1)小球通过点时的最小速度;
(2)若小球以速度v=3.0m/s通过圆周点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?
分析与解答:(1)小球通过圆周点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周点的向心力,绳对小球恰好不施拉力,如图所示,此时小球的速度就是通过圆周点的最小速度v0,由向心力公式有:mg=解得:G=mg=v0=m/s=2.5m/s.
(2)小球通过圆周点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施拉力F,如图所示,此时有F+mg=解得:F=-mg=(0.4×-0.4×10)N=1.76N
若在点时绳子突然断了,则提供的向心力mg小于需要的向心力,小球将沿切线方向飞出做离心运动(实际上是平抛运动).
课堂小结
本节课中需要我们掌握的关键是:一个要从力的方面认真分析,搞清谁来提供物体做圆周运动所需的向心力,能提供多大的向心力,是否可以变化;另一个方面从运动的物理量本身去认真分析,看看物体做这样的圆周运动究竟需要多大的向心力.如果供需双方正好相等,则物体将做稳定的圆周运动;如果供大于需,则物体将偏离圆轨道,逐渐靠近圆心;如果供小于需,则物体将偏离圆轨道,逐渐远离圆心;如果外力突然变为零,则物体将沿切线方向做匀速直线运动.布置作业
教材“问题与练习”第1、2、3、4题.
板书设计
8.生活中的圆周运动
一、铁路的弯道
1.轨道水平:外轨对车的弹力提供向心力
轨道斜面:内外轨无弹力时重力和支持力的合力提供向心力
二、拱形桥
拱形桥:FN=G-m凹形桥:FN=G+m三、航天器的失重现象
四、离心运动
1.离心现象的分析与讨论
2.离心运动的应用与防止
活动与探究
课题:到公园里亲自坐一下称为“魔盘”的娱乐设施,并研究、讨论:“魔盘”上的人所需向心力由什么力提供?为什么转速一定时,有的人能随之一起做圆周运动,而有的人逐渐向边缘滑去?
观察并思考:
1.汽车、自行车等在水平面上转弯时,为什么速度不能过大?
2.观察滑冰运动员及摩托车运动员在弯道处的姿势,并分析其受力情况.
习题详解
1.解答:因为正常工作时转动轴受到的水平作用力可认为是零,所以转动轴OO′将受到的作用力完全是由小螺丝钉P做圆周运动时需要的向心力引起的.
故力F=mω2r=m(2πn)2r=0.01×(2×3.14×1000)2×0.20N=7.89×104N.
2.解答:这辆车拐弯时需要的向心力为F==2.0×103×N=1.6×104N>1.4×104N
所以这辆车会发生侧滑.
3.解答:(1)汽车在桥顶时受力分析如图所示.
汽车通过拱形桥
则据牛顿第二定律有G-FN=①
代入数据可得FN=7600N,所以由牛顿第三定律有汽车对地面的压力为7600N.
(2)当FN=0时,汽车恰好对桥没有压力,此时可得汽车的速度为v=22.4m/s(g取10m/s2).
(3)由①式可知,对同样的车速,拱桥圆弧的半径越大,汽车对桥的压力就越大,所以拱桥的半径比较大些安全.
(4)因为腾空时FN=0,所以其速度v=m/s=7900m/s
即需要7900m/s的速度才能腾空.
4.解答:对小孩的受力分析如图所示,则据牛顿第二定律有
FN-G=由机械能守恒定律有mgl(1-cos60°)=两式联立代入数据可得FN=450N,故秋千板摆到最低点时,小孩对秋千板的压力是450N.
设计点评
本节课重点是圆周运动中向心力和向心加速度的应用,关键问题是要找出向心力是由谁来提供.圆周运动和生活密切相关,学生容易受到生活中的定势思维所干扰,对向心力分析不足,所以教学中列举了生活中大量的常见现象,并借助生活中的事例进行辨析,通过师生分析、论证从而得出了正确的结论.
高三物理教案篇6
教学目标
知识目标
1、知道什么是自由落体运动.
2、知道什么是重力加速度,知道重力加速度的方向和通常的取值.
3、会应用相应的运动学公式解答有关自由落体运动的问题.
能力目标
调动学生积极参与讨论的兴趣,培养逻辑思维能力及表述.
教学建议
教材分析
教材把自由落体运动作为初速度为零、加速度为的匀加速直线运动的特例来处理,没有另外给出自由落体运动的公式,这体现了物理学从简单问题入手,用理想化的方法处理实际问题的方法.研究自由落体运动时,给出了频闪照相机的照片,但没有作定量的详细分析,只要求从图上看出物体越落越快,物体作加速运动即可.教材为了简便,援引伽利略的研究结果,直接给出了自由落体运动是初速度为零的匀加速直线运动,重力加速度的讲述,也比较适合学生的思维习惯,根据实验在同一地点,从同一高度同时自由下落的物体,同时到达地面的事实.由知它们的加速度必相同,所以本节课的重点和关键是做好实验和推理分析.
教法建议
可以按照教材安排的顺序,在讲解的同时,通过实验,边讲边议,如果学生条件许可,可采取讨论式的教法.
教学设计示例
教学重点:认识自由落体运动是初速度为零、加速度为的匀变速直线运动,并能应用匀变速直线运动的规律解决自由落体运动的问题.
教学难点:自由落体运动中不同物体下落的加速度都为.
主要设计:
一、自由落体运动
[方案一]
1、思考与讨论:
(1)重的物体下落得快?还是轻的物体下落得快?
(2)请举出一重的物体下落快的实例?(演示一团棉花和一块石头下落的现象)
(3)请举出一轻的物体下落快的实例?(演示一小粒石子和一大张纸片下落情况)
2、分析引导:
(1)上述实验现象是因为有空气阻力存在使现象变得复杂,(教师指出)
(2)演示:把纸片团成一个小纸团,再让它和小石子同时下落的现象.
(3)提问:如果没有空气阻力,只在重力作用下轻重不同的物体下落快慢如何?
(4)演示:按教材要求做“牛顿管”实验.
3、分析与小结:
(1)分析“牛顿管”实验的特点,引出自由落体运动的定义.
(2)展示课件“自由落体运动的频闪效果”
(3)分析频闪效果,分析出自由落体运动是加速运动,进而指出,自由落体运动是初速度为零的匀加速直线运动.
[方案二]
1、教师提出我们要研究一种见得非常多的物体运动,即物体下落的运动,问学生:重的物体下落快还是轻的物体下落的快?
2、启发学生回想所见过物体的下落运动,有没有轻的物体下落快的现象?引导学生对观察到的物体下落现象总结为“有时重的物体下落快、有时轻的物体下落快”(配合演示)
3、提问:怎样从理论上说明重的物体比轻的物体下落快是不对的?让学生看教材30页有关伽利略的推理,认识到从“重的物体下落快”会导出矛盾的结论.
4、提问:为什么有时重的物体下落快?有时轻的物体下落快?可通过前面的演示启发学生想到:空气阻力的作用使得物体下落问题变得复杂.
5、教师问:我们应该怎样研究物体的下落运动?引导学生想到研究问题应从简单到复杂,因此应首先研究没有空气阻力时物体的下落情况.指出可根据实验来研究.
6、演示:“牛顿管实验”让学生得出结论:没有空气阻力,只有重力作用时,轻重不同的物体下落快慢相同.
7、教师小结:物体只在重力作用下从静止下落的运动叫自由落体运动,轻重不同的物体自由下落快慢相同.
8、展示课件“自由落体运动的频闪效果”,总结特点:自由落体运动是初速度为零的匀加速直线运动.
二、自由落体加速度:
1、分析引导:在同一地点,从同一高度同时下落的物体,下落到同一位置时(这个位置是任意的)所用时间总是相同的.可知:这些初速度为零的匀加速运动,在相同时间里发生了相等的位移,由知,它们的加速度必相同.
2、让学生看书,记住重力加速度的方向,了解一些地区的重力加速度的数值.
3、让学生根据匀变速运动的公式,推导出自由落体运动的公式:
若学生基础较好,可根据自由落体频闪照片,用分析纸带的方法粗算一下自由落体加速度.
探究活动
滴水法测重力加速度的过程是这样的,让水龙头的水一滴一滴的滴在其正方的盘子里,调整水龙头,让前一滴水滴到盘子时后一滴恰好离开水龙头,测出几滴水落到盘中的总时间t,用刻度尺量出水龙头到盘子的高度差h,即可算出重力加速度.请思考:为什么不只测出一滴水下落的时间即开始计算?按前面给的方法测出一个水滴下落时间还是?为什么?重力加速度的表达式是什么?实际做一做,计算一下,当地的重力加速度.
高三物理教案篇7
教学目标
【知识与能力】
探究得出滑动摩擦力产生的条件和影响滑动摩擦力大小的因素以及计算公式。
【过程与方法】
通过观察,了解滑动摩擦力的存在,实验探究产生滑动摩擦力的条件以及影响其大小的因素,提高实验技能和探索能力。
【情感、态度和价值观】
学生能提高实事求是的科学实验态度,锻炼思维能力、抽象能力,运用物理知识解释生活现象。
教学重难点
【重点】
滑动摩擦力产生条件和计算式。
【难点】
实验探究的过程。
教学方法
观察法、实验法、讨论法、问答法等。
教学过程
(一)新课导入
展示几个情景:孩子玩滑梯、火车急刹车、冰壶运动等。
通过提问这些情景中的现象,引导学生思考,从而得出滑动摩擦力的概念,导出新课。
(二)科学探究
问题1:滑动摩擦力什么情况下才会出现?结合前面学的静摩擦力条件进行讨论。
学生讨论:需要有压力、粗糙的接触面以及相对运动。
问题2:为什么冰壶、火车、孩子受到的滑动摩擦力不同呢?
实验探究:影响滑动摩擦力大小的因素:
1.猜想:与压力有关,与速度有关,与质量有关,与粗糙程度有关等等。
2.设计实验:用弹簧秤拉动木块,可通过加减砝码改变压力,改变拉动速度,更换接触面,例如玻璃、木板、石板、毛巾等。弹簧秤示数便是滑动摩擦力示数,设计表格进行记录。
3.进行实验:6人一组进行实验,注意小组内部的分工问题,教师巡视。
4.得出结论:滑动摩擦力与压力和接触面的粗糙程度有关。
5.交流讨论:分享实验中的数据和实验细节,误差处理等;讨论控制变量法的注意事项,即控制无关变量相同,只改变探究的物理量等;实验安全问题、保护器材问题等等。
6.总结:结合实验结论和教材,得出滑动摩擦力的计算公式,f=μN
问题3:滑动摩擦力的方向如何判断呢?结合示例分析并讨论。
示例:木块在地面上滑动、木块在木板上滑动并带动木板一起滑动。
学生讨论:滑动摩擦力方向与相对运动方向相反,相对运动方向有时并不是运动方向。
问题4:滑动摩擦力有什么作用呢?举例说明。
回答:生活中有很多地方可以见到滑动摩擦力,车辆的刹车系统是利用滑动摩擦力进行减速,打磨东西也是利用了滑动摩擦力,同时机器中的滑动摩擦力会损耗器材,所以需要使用润滑油来减小滑动摩擦力等等。
(三)巩固提高
给出适当例题,运用公式求解摩擦力大小,判断摩擦力方向。
(四)小结作业
小结:浅谈本节课收获。
作业:课下继续探索,拓展科学知识。
高三物理教案篇8
本节从物质微观结构的角度认识物体带电的本质,使物体带电的方法。给学生渗透看问题要透过现象看本质的思想。摩擦起电、两种电荷的相互作用、电荷量的概念初中已接触,电荷守恒定律对学生而言不难接受,在此从原子结构的基础上做本质上分析,使学生体会对物理螺旋式学习的过程。本节关键是做好实验,从微观分析产生这种现象的原因。有了使物体带电的理解,电荷守恒定律便水到渠成,进一步巩固高中的守恒思想。培养学生透过现象看本质的科学习惯。通过阅读材料,展示物理学发展中充满睿智和灵气的科学思维,弘扬前辈物理学家探寻真理的坚强意志和科学精神。
教学预设
使用幻灯片时充分利用它的高效同时,尽量保留黑板的功能始终展示本节课的知识框架。
在条件允许的情况下努力使实验简化,给学生传递这样一个信息──善于从简单中捕捉精彩瞬间,从日常生活中发现和体验科学(阅读材料)。
练习题设计力求有针对性、导向性、层次性。
教学目标
(一)知识与技能
知道两种电荷及其相互作用。
知道三种使物体带电的方法及带电本质。
知道电荷守恒定律。
知道什么是元电荷、比荷、电荷量、静电感应的概念。
(二)过程与方法
物理学螺旋式递进的学习方法。
由现象到本质分析问题的方法。
(三)情感态度与价值观
通过对本节的学习培养学生从微观的角度认识物体带电的本质—透过现象看本质。
科学家科学思维和科学精神的渗透─—课后阅读材料。
教学重、难点
重点:电荷守恒定律
难点:利用电荷守恒定律分析解决相关问题摩擦起电和感应起电的相关问题。
教学过程
引入新课:今天开始我们进入物理学另一个丰富多彩,更有趣的殿堂,电和磁的世界。高中的电学知识大致可分为电场的电路,本章将学习静电学,将从物质的微观的角度认识物体带电的本质,电荷相互作用的基本规律,以及与静止电荷相联系的静电场的基本性质。
板书第一章静电场
板书一、电荷(复习初中知识)
1.两种电荷:正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示。把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示。
2.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引。
3.使物体带电的方法:
摩擦起电──学生自学P2后解释摩擦起电的原因,培养学生理解能力和语言表达能力。为电荷守恒定律做铺垫。
演示摩擦起电,用验电器检验是否带电,让学生分析使金属箔片张开的原因过渡到接触起电。
接触起电──电荷从一个物体转移到另一个物体上仔细观察从靠近到接触过程中还有哪些现象?──靠近未接触时箔片张开张开意味着箔片带电?看来还有其他方式使物体带电?其带电本质是什么?──设置悬念。
自学P3第二段后,回答自由电子和离子的概念及各自的运动特点。解释观察到的现象。
再演示,靠近(不接触)后再远离,箔片又闭合,即不带电,有没有办法远离后箔片仍带电?
提供器材,鼓励学生到时讲台演示。得出静电感应和感应起电。
静电感应和感应起电──电荷从物体的一部分转移到另一部分。
通过对三种起电方式本质的分析,让学生思考满足共同的规律是什么?得出电荷守恒定律。
学生自学教材,掌握电荷守恒定律的内容,电荷量、元电荷、比荷的概念。
高三物理教案篇9
教学目标
一、知识与技能:
知道并能用语言表述牛顿第一定律,
二、过程与方法:
培养学生严谨的逻辑推理能力。
通过对大量实例的分析,培养学生归纳、综合能力。
善于思考、善于总结,把物理与实际生活紧密结合。
三、情感态度与价值观:
通过探究物体不受力时怎样运动,形成实事求是、不迷信、尊重自然规律的科学态度。
教学重与难点
重点:“理想实验”法,牛顿第一定律。
难点:让学生确信牛顿第一定律并理解其内涵。
教学准备惯性小车、斜面、木块、木板、毛巾、标志小旗.
教学过程
一、体验、观察、顿悟、阐述
师:同学们,根据平常的观察和生活经验告诉我们:力可以使静止的物体运动,也可以使运动的物体静止。(请观察)
学生实验一:抽学生到讲台上做用力使讲桌运动的实验。并指出当我们用力推或拉桌子时,桌子才会运动,当推力或拉力撤消后,桌子就停止运动。(A、运动需要力来维持)
学生实验二:学生演示小车在木板上运动情况。用力推小车时小车开始运动,当推力撤消后小车仍能运动。
(B、运动不需要力来维持)
师:既然物体的运动不需要力来维持,小车为什么会停下来呢?
生:是桌面对小车的阻力。
(好,下面我们就用实验来探究阻力对物体运动的影响)
二、探究、归纳、推理
(一)探究:阻力对物体运动的影响
1、介绍实验器材。
2、请同学带着下面的问题和老师一起来完成实验探究。
(1)为充分“显示”阻力对物体运动情况的影响,每次实验时应该控制哪些因素相同?如何改变物体受到的阻力?
(2)为什么让小车从斜面的同一高度滑下?
(3)小车在不同材料的平面上最终停下来的原因是什么?
3、演示书上图12.5-3所示的实验,
教案
《九年级物理牛顿第一定律教学设计》(http://www.unjs.com)。
(1)观察实验现象,记录实验结果。
接触面
阻力的大小
(选填“大”“较小”或“最小”)
小车运动的距离
(选填“短”“较长”或“很长”)
毛巾
棉布
木板
(2)交流讨论思考题。
(3)展示讨论结果。
(二)归纳
生:平面越光滑,小车运动的距离越远,这说明小车受到的阻力越小,速度减小得越慢。
(三)推理,升华实验结论。
师:如果我们将木板换成表面更光滑的玻璃,小车运动的距离与在木板上运动的距离相比较,哪一个更远些?
生:在玻璃上运动的距离更远。
师:如果有一种材料,它的表面绝对光滑,对小车受到的阻力为零,小车将做什么样的运动?
生:小车将以恒定不变的速度永远运动下去。
师:运动的物体不受力将一直运动下去,那静止的物体如果不受力,会怎样呢?
生:永远保持静止状态。
三、揭示规律、板书课题
一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态.
师:今天同学们在实验的基础上通过进一步推理得出的规律跟17世纪英国科学家牛顿得出规律完全一样。同学们真棒,你们是当今的牛顿。
板书课题:牛顿第一定律
想想议议(学生交流讨论)
1、牛顿第一定律的适用范围:;成立的条件:;结论:。
2、静止的物体如果不受力的作用将保持状态;运动的物体如果不受力的作用将保持。
师:牛顿第一定律充分揭示了物体运动和力的关系,力不是用来维持物体运动的原因,而是改变物体运动状态的原因。
四、课堂练习(见学生手中小练习)
五、课堂小结
1、牛顿第一定律的内容是:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
2、适用范围:一切物体;条件:不受力;结论:总保持静止状态或匀速直线运动状态。
3、力是改变物体运动状态的原因。
六、课外作业(略)
附板书设计
12.5牛顿第一定律
1、内容:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。
2、适用范围:一切物体;
条件:不受力;
结论:总保持静止状态或匀速直线运动状态。
3、力是改变物体运动状态的原因。
高三物理教案篇10
核力与核能
三维教学目标
1、知识与技能
(1)知道核力的概念、特点及自然界存在的四种基本相互作用;
(2)知道稳定原子核中质子与中子的比例随着原子序数的增大而减小;
(3)理解结合能的概念,知道核反应中的质量亏损;
(4)知道爱因斯坦的质能方程,理解质量与能量的关系。
2、过程与方法
(1)会根据质能方程和质量亏损的概念计算核反应中释放的核能;
(2)培养学生的理解能力、推理能力、及数学计算能力。
3、情感、态度与价值观
(1)使学生树立起实践是检验真理的标准、科学理论对实践有着指导和预见作用的能力;
(2)认识开发和利用核能对解决人类能源危机的重要意义。
教学重点:质量亏损及爱因斯坦的质能方程的理解。
教学难点:结合能的概念、爱因斯坦的质能方程、质量与能量的关系。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:多媒体教学设备一套:可供实物投影、放像、课件播放等。
(一)引入新课
提问1:氦原子核中有两个质子,质子质量为mp=1.67×10-27kg,带电量为元电荷e=1.6×10-19C,原子核的直径的数量级为10-15m,那么两个质子之间的库仑斥力与万有引力两者相差多少倍?(两者相差1036倍)
提问2:在原子核那样狭小的空间里,带正电的质子之间的库仑斥力为万有引力的1036倍,那么质子为什么能挤在一起而不飞散?会不会在原子核中有一种过去不知道的力,把核子束缚在一起了呢?今天就来学习这方面的内容。
(二)进行新课
1、核力与四种基本相互作用
提示:20世纪初人们只知道自然界存在着两种力:一种是万有引力,另一种是电磁力(库仑力是一种电磁力)。在相同的距离上,这两种力的强度差别很大。电磁力大约要比万有引力强1036倍。
基于这两种力的性质,原子核中的质子要靠自身的引力来抗衡相互间的库仑斥力是不可能的。核物理学家猜想,原子核里的核子间有第三种相互作用存在,即存在着一种核力,是核力把核子紧紧地束缚在核内,形成稳定的原子核,后来的实验证实了科学家的猜测。
提问
1:那么核力有怎样特点呢?
(1)核力特点:
第一、核力是强相互作用(强力)的一种表现。
第二、核力是短程力,作用范围在1.5×10-15m之内。
第三、核力存在于核子之间,每个核子只跟相邻的核子发生核力作用,这种性质称为核力的饱和性。
总结:除核力外,核物理学家还在原子核内发现了自然界的第四种相互作用—弱相互作用(弱力),弱相互作用是引起原子核β衰变的原因,即引起中子转变质子的原因。弱相互作用也是短程力,其力程比强力更短,为10-18m,作用强度则比电磁力小。
(2)四种基本相互作用力:
弱力、强力、电磁力、引力和分别在不同的尺度上发挥作用:
①弱力(弱相互作用):弱相互作用是引起原子核β衰变的原因→短程力;
②强力(强相互作用):在原子核内,强力将核子束缚在一起→短程力;
③电磁力:电磁力在原子核外,电磁力使电子不脱离原子核而形成原子,使原了结合成分子,使分子结合成液体和固体→长程力;
④引力:引力主要在宏观和宇观尺度上“独领风骚”。是引力使行星绕着恒星转,并且联系着星系团,决定着宇宙的现状→长程力。
2、原子核中质子与中子的比例
随着原子序数的增加,稳定原子核中的中子数大于质子数。
思考:随着原子序数的增加,稳定原子核中的质子数和中子数有怎样的关系?(随着原子序数的增加,较轻的原子核质子数与中子数大致相等,但对于较重的原子核中子数大于质子数,越重的元素,两者相差越多)
思考:为什么随着原子序数的增加,稳定原子核中的中子数大于质子数?
提示:学生从电磁力和核力的作用范围去考虑。
总结:
若质子与中子成对地人工构建原子核,随原子核的增大,核子间的距离增大,核力和电磁力都会减小,但核力减小得更快。所以当原子核增大到一定程度时,相距较远的质子间的核力不足以平衡它们之间的库仑力,这个原子核就不稳定了;
若只增加中子,中子与其他核子没有库仑斥力,但有相互吸引的核力,所以有助于维系原子核的稳定,所以稳定的重原子核中子数要比质子数多。
由于核力的作用范围是有限的,以及核力的饱和性,若再增大原子核,一些核子间的距离会大到其间恨本没有核力的作用,这时候再增加中子,形成的核也一定是不稳定的。因此只有200多种稳定的原子核长久地留了下来。
3、结合能
由于核子间存在着强大的核力,原子核是一个坚固的集合体。要把原子核拆散成核子,需要克服核力做巨大的功,或者需要巨大的能量。例如用强大的γ光子照射氘核,可以使它分解为一个质子和一个中子。
从实验知道只有当光子能量等于或大于2.22MeV时,这个反应才会发生。相反的过程一个质子和一个中子结合成氘核,要放出2.22MeV的能量。这表明要把原子核分开成核子要吸收能量,核子结合成原子核要放出能量,这个能量叫做原子核的结合能。
原子核越大,它的结合能越高,因此有意义的是它的结合能与核子数之比,称做比结合能,也叫平均结合能。比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定。
那么如何求原子核的结合能呢?爱因斯坦从相对论得出了物体能量与它的质量的关系,指出了求原子核的结合能的方法。
4、质量亏损
(1)质量亏损
科学家研究证明在核反应中原子核的总质量并不相等,例如精确计算表明:氘核的质量比一个中子和一个质子的质量之和要小一些,这种现象叫做质量亏损,质量亏损只有在核反应中才能明显的表现出来。
回顾质量、能量的定义、单位,向学生指出质量不是能量、能量也不是质量,质量不能转化能量,能量也不能转化质量,质量只是物体具有能量多少及能量转变多少的一种量度。
高三物理教案篇11
认真分析高考物理试题和学生高考成绩,回首自己高三这几年来的教学工作,有许多值得总结和思考的地方。下面就近年来在教育教学中的体会总结如下:
一、加强研究,明确方向
高三年级教学伊始,认真学习研究“新大纲”以及前几年的高考试题,从中找出共性,发现变化及趋势,总结规律,明确备考方向,提高复习备考的针对性。物理试题的共同特点是:注重基础,考查物理主干知识、重点概念和规律;紧密结合实际,考查综合应用物理知识解决实际问题的能力,体现物理知识在实际问题中的应用;加强实验能力考查。
二、制定计划,落实目标
根据学校的具体情况,制定切合实际的复习计划,明确每个阶段的目标定位
1、夯实基础,循序渐进,培养能力
高考物理试题多数题目来源于课本中所谓的非重要章节,甚至有的是课本的原话再现,这要求我们重视课本,并对每个知识点进行落实。对于主干知识更是考查重点,这些知识的应用前提是在理解的基础上,否则无法实现。怎样才能做到深刻理解双基知识?我认为必须安排学生坚持“循序渐进”这个原则。任何贪多、求快的复习安排,都只能食而不化,对所复习的知识仍然是一知半解,不深不透,不可能达到正确理解的目的。“循序渐进”是按课文的章节顺序,稳扎稳打。具体说,可按以下几项来操作:
①对每节课文坚持认真阅读,及时消化,理出要点;
②独立完成相应的巩固作业,检查自己对所涉及的概念及规律的理解程度;
③每章结束,可借助一些参考书搞一次单元小结,理一理本章知识线索;
④每逢大型考试,再将知识回头联系。以上各项如能持之以恒,则对双基知识的掌握定会有相当的收益。
在加深对“双基”理解的基础上,培养学生用物理思维分析解决问题的能力,也就是复习中应做好点面结合。主干知识的复习,首先选择一系列相关联的一环扣一环的小题目串由学生自主复习、解答作为铺垫带动相关知识点的复习,这样,学生清楚物理模型的建立过程以及用物理思维分析解决问题的过程和方法。相反,一个综合性较强的题目,可以采取拆分的方法——“化整为零”,对复杂问题的分析、分解、建模、解决问题的全过程展现在学生的眼前,有利于学生理解掌握解决问题的思维过程和方法,提高应用物理知识解决实际问题的能力。
2、通过专题复习,提高综合分析问题的能力
高三复习的后阶段,在基础知识的认知基本到位的前提下,可考虑搞一些专题性质的复习。采用归类、对比的方法,加深对双基知识的理解,并提高自己综合、分析的能力。拿物理图象举例说吧,有关这方面的知识,原来散见于力学、热学、电学等章节,初学时一般只能就事论事,学的是一个个图线的某个方面的意义。复习时若还是机械重复一次,认识必然还是支离破碎,不能提高认知能力的水平。如果搞一个“物理图象”的专题,综合一下已有的对图线的各项认识,就能从图象的涵义、截距、斜率、走向、覆盖面积等诸多方面全方位认识图象的物理涵义。这样,对图线的认识、解释、翻译的能力便得到了提高,再去解决同类型的问题,自然就会迎刃而解了。
再如,带电粒子在电场、磁场中的运动,本是两个独立的部分,且都是重点的内容。单独分开来处理,情况尚可。一旦综合起来,常见有张冠李戴、混淆不清的错误。那么,不妨将两者联系起来,搞一个专题,通过对比,可从带电粒子在不同场中的受力情况;场力做功情况;粒子运动情况及轨迹等几方面来比较两者的区别,加深对这两个事物的认识,并且还可进一步从已见到的问题中,小结本类型问题如何来“制造”变化,常用解题思想方法有哪些,需要注意些什么问题等等。这样复习,既巩固对相关基础知识的理解,又从高处获得对情况更全面、更深入的了解,复习的效果可望有质的飞跃。
物理试题仍是学科内综合,以专题形式进行学科内综合复习,编织知识网络,可以实现多题归一,举一反三、触类旁通,并能抓住应用物理知识解决实际问题的实质方法——分析物理过程,建立物理模型;有利于培养学生推理和分析综合的能力,用物理思维分析解决实际问题的能力;通过专题训练进行思想方法归纳和总结。
3、加强实验教学,提高实验能力
实验题总是学生较为薄弱的部分,得分率一直偏低。为了提高这块的得分率,复习备考时,注重抓实验原理和设计思想的理解,实验操作要领、误差来源分析及减小误差的方法,对实验进行归纳、对比;读数类、电路设计类,力学中的纸带处理,图象处理等。建议在高三复习阶段重做高中阶段已做过的重要实验,开放实验室,但不要简单重复,要求学生用新视角重新观察已做过的实验,要有新的发现和收获,进一步完善认知结构,明确认识结论、过程和质疑三要素,为进一步培养学生科学精神打下基础。学会正确、简练地表述实验现象、实验过程和结论,特别是书面的表述。
三、加强学生学习情况信息反馈,优化课堂教学
高三时间紧,课堂教学更应具有针对性、实效性,为了能达到这个要求,我们需要对教材有透彻的理解,对知识的应用有更深更广的了解,对学生可能遇到的难点或不解之处有预见,以使教学能达到事半功倍的效果。
四、注重解题方法指导
对于物理计算题,解题方法及规范与否将大大影响到学生的得分,所以有必要加强解题方法的指导。物理评分原则是重过程、轻计算,按步得分,如何抓住得分点尤其重要。我们除了坚持训练学生的解题规范外,指导学生用假设未知物理量列方程的方法实现分步得分,同时应写清楚研究对象和过程,标注方程序号,物理量符号书写应规范等。
回顾过去的教学工作,略作梳理,值得反思的问题多多,慢慢品味,真有不少收获。也更好地开展新高三教学。
高三物理教案篇12
教学目标
(1)知道由于地球吸引而使物体具有的力叫重力
(2)知道重力的方向总是竖直向下
(3)理解重力的大小与质量成正比,会用弹簧测力计测量物体的重力
教学重难点
重点:
重力的概念、方向和大小
难点:
重力方向的应用
教学工具
多媒体
教学过程
学法指导:
1、通过观察水往低处流、物体从空中落下、抛向空中的物体最终落回地面等现象,找出它们的共同点,引出重力的概念,培养学养生的观察、分析能力
2、经历探究过程得到重力与质量的关系G=mg,培养学生的实验、归纳能力
3、由实验感知重力的方向并能运用结论对实际问题做出分析,培养学生分析、概括和应用知识的能力
预习导入:
通过阅读“重力的由来”回答:
①宇宙间任何两个物体,大到天体,小到灰尘之间,都存在________
的力,这就是万有引力。
②由于地球的吸引而使物体受到的力,叫做_________.地球上的所有物体都受到________的作用。
通过阅读“重力的大小”回答:
①物体所受的重力跟它的______成正比。
②重力与质量的比值大约是________,二者关系可用______来
表示。重力用_____表示,单位是_____,质量用______,单位是_____.
通过阅读“重力的方向”回答:
①重力的.方向是__________的,是指地球的_______。
②重力方向的应用是____________________________________.
通过阅读“重心”回答:
①重力在物体上的作用点叫做_______.
②方形薄板的重心在两条对角线的_______,球的重心在_____,粗细均匀的棒的重心在它的_______.
学习导入:
(4)重心
提出问题:什么叫物体的重心?
学生回答:___________________________________________________.
总结:重力的作用点叫重点
规则:几何中心。不规则:可根据重力的方向竖直向下来找重心。
课堂达标:
1、下列几种说法中,正确的是
A.物体所受的重力跟它所含的物质多少成正比
B.质量增大几倍,重力也增大几倍,因此物体的质量与它的物重相同
C.质量相同的木块与铁块相比,铁块所受重力比木块所受重力大
D.重力为1N的所有物体,其质量为9.8kg
2、人站在一个竖直上下的电梯上时,下列说法正确的是
A.电梯匀速上升时,支持力大于人的重力
B.电梯匀速下降时,支持力小于人的重力
C.电梯匀速上升或下降时,支持力都等于人的重力
D.电梯没有开动时,人的重力才可能等于支持力