教案吧 > 高中教案 > 高三教案 >

高三数学教案模板范文

时间: 新华 高三教案

编写教案可以帮助教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。高三数学教案模板范文怎么才能写好?这里分享一些高三数学教案模板范文,方便大家学习。

高三数学教案模板范文篇1

一、指导思想

今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。 提高学生的学习能力仍是我们的奋斗目标。近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。 高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。更加注重考查考生进入高校学习所需的基本素 养,这些问题应引起我们在教学中的关注和重视。

二、 注意事项

1、 高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。我们希望在复习课中 要认真落实“基础练习”,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养。特别是要学会把基础知识放在新情景中去分析,应用。

2、 高中的‘重点知识’在复习中要保持较大的比重和必要的深度。

原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何 中的综合问题等。在教学中,要避免重复及简单的操练。新增的内容:算法、概率等内容在复习时也应引起我们的足够重视。总之高三的数学复习课要以培养逻辑思维 能力为核心,加强运算能力为主体进行复习。

3、 重视‘通性、通法’的落实。

要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、 习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。

4、 认真学习《__省2015年高考考试说明》,研究近三年的高考试题,提高复习课的效率。

《考试说明》是命题的依据,复习的依据。 高考试题是《考试说明》的具体体现。只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命题专家在认识《考试说明》上的差距。 并力求在二轮复习中缩小这一差距,更好地指导我们的复习。

5、 渗透数学思想方法,培养数学学科能力。

《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类讨论的思想、数形结合的思想。 以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。

6、 二轮复习课中注意新的目标定位。

① 培养学生搜集和处理信息的能力;

② 激发学生的创新精神;

③ 培养学生在学习过程中的的合作精神;

④ 激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用。

三、知识和能力要求

1、知识要求 对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。

(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识或初步的 理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。

(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻 画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。

(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识 分析和解决较为复杂的或综合性的数学现象与数学问题。

2、能力要求

能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推 理论证能力以及实践能力和创新意识。

(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件, 寻找与设计合理、简捷运算途径。

(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息, 并作出正确的判断;能根据要求对数据进行估计和近似计算。

(3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关 系;会运用图形与图表等手段形象地揭示问题的本质。

(4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定 的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

(5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学 命题真实性。

(6)应用意识和实践能力:能够对问题所提供的信息资料进行归纳、整理和分类, 将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题。

(7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想 和方法,提出问题、分析问题和解决问题。

四、学生情况分析:

1 基础知识掌握情况分析:高三一部11、12班大部分学生基础知识掌握情况较差,计算能力不强,一些基 本的题型都不能自如的解决。通过一段的一轮复习,大部分学生对复习过的公式,定理、法则都有了一定的认识与理解。基本能够记住该记公式,但对于没有复习的 部分,还是有一定的欠缺。表现为一些基本的公式、法则、定理等都忘掉了。

2 学习态度情况分析:有相当一部分同学学习态度极为不端正,主要表现为:

(1)缺乏上进心,有相当一部分同学信心不足,没有必胜的勇气和信心。

(2)不能按时完成作业,有抄袭或只是解决一些简单的问题而缺乏深入研究难题的 习惯。

(3)缺乏自主复习的习惯,大部分同学只是在等老师引导进行一轮复习,而不能够 自己动手搞好提前复习,表现在考试(或作业)中遇到了没有复习的试题时,显得毫无办法。

(4)缺乏动手能力及动手习惯,对复习过的知识不能及时的进行巩固、练习,所发 的讲义、练习卷等不能够及时、认真填写,导致对复习过的知识掌握的熟练程度不够。

3 复习方式、方法分析:

(1)缺少科学有效的复习方法,有相当一部分同学没有改错本,在一些爱错的地方 不断的犯错。不能够做到“吃一堑、长一智”。

(2)一些同学不会听课,不会记笔记。上课时,整堂忙于记笔记,而忽视听讲,不 注意听思路的分析及探索过程。

(3)不注意归纳知识,复习到的只是一些零散的知识,而不是有效的知识、方法体 系,显得很笨。

(4)不注意经常回顾,对复习过的知识置之千里,而不去经常巩固、练习。时间长 了,又“生锈”了。

五、复习对策教学措施

1、尽快帮助学生树立信心!

2、教给学生科学的复习习惯和复习方法。

3、坚持基础知识训练。

4、对高考要考察的六类解答问题,一定要认真做好专题复习和训练; 每周训练两套模拟试题;每天做好专题训练的配套作业。

六、教学参考进度

1、 2月10日至4月20日为第二轮复习阶段。这一轮的复习方式是综合训练与专题总结并举,在每周两次综合练习的基础上穿插专题总结;

2、 4月21日至5月20日为第三轮复习阶段。这一阶段主要以综合训练为主。每 周至少做三套综合练习题,题目来源为山东省各地市的一、二轮模拟题。

3、 5月21日至6月7日为回扣课本阶段。这一阶段主要根据第三轮综合练习中的问题回顾课本,以达到进一步落实升华的目的。

七、二轮复习资料编写专题内容及分工安排

(一)专题分工 专题一:集合与简单逻辑用语------邓光珍专题二:《函数与导数》---张福平专题三:《三角函数及解三角形》----王富香专题四:《数列》----姜守芹 专题五:《立体几何》----高吉泉专题六:《解析几何(穿插向量)》----赵来伟专题七:《概率与统计》----梁建国专题八:《导数与积分》----梁建国 专题九:《思想方法与选择、填空题的解法》---高吉泉

(二)编写专题的基本要求:

1、专题以高考命题趋势、考点透视、知识框架题目、例题、专项训练的形式出 现,要精选题目,要有一定的综合性,难度要达到高考的要求,不能降低要求。

2、每个专题约4 天时间完成(包括过关测试),采用讲练结合,以练为主。

3、各专题的题量要根据本专题的地位及难易程度,既要有小题,也要有大题。

4、每个专题在复习过程中要让学生理清本专题的常考考点、高考地位,高考分 值、主要题型、高考热点、重点等。在第二轮复习的强化训练中,根据学生的实际情况,以强化训练为主。

在强化训 练中,命题一定要针对学生的实际情况,有针对性地命题,难度要适易,尤其中低档强化训练题为主,不要过于拔高要求,各层次的训练都要狠抓基础,针对高考的 方向,切实做到通过强化训练,使学生的数学成绩能得到稳步提高。在强化训练的试卷讲评中,要提前探讨和思考,让学生有回顾的余地,切忌发下试卷就讲评,且 要有针对性的讲解,老师备课一定要备学生,尽可能一节课的时间讲评完试卷,每次的训练中要总结得与失,出现的问题要及时得到解决,问题较多的还要多次重复 考及多次训练。

八、本学期备课内容及进度: 周次、内容、目的、要求重点、考点热点

1 市第二次统考试卷讲评

2 专题一集合与简单逻辑用语知识框架、双基集合运算和充分必要条件

3 专题二函数与导数知识框架、双基函数不等式综合应用

4 第三专题角函数及解三角形知识网络、双基数列综合应用

5 第四专题数列函数创新探究函数创新综合

6 专题五立体几何回扣双基、知识框架立体几何综合应用

7 专题六解析几何知识框架、回扣双基解析几何综合应用

8 市三次统考试卷讲评

9 第七专题概率与统计知识框架、双基概率统计综合

10 第八专题导数应用和积分双基、知识要点导数综合应用

11 第九专题思想方法和选、填题解法回扣基本方法和思想数形结合、分类讨论、化归转化、函数与方程

12 市四次统考试卷讲评

13 考前模拟训练综合训练、应试能力和技巧重点、热点讲评

14 回扣课本、反馈双基查缺补漏,回归课本

15 回扣课本、反馈双基回归课本,考试方法

16 高考

高三数学教案模板范文篇2

函数的单调性与导数教案

一、目标

知识与技能:了解可导函数的单调性与其导数的关系 ; 能利用导数研究函数的单调性,会求函数的单调区间。

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、重点难点

教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

三、教学过程:

函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.

四、学情分析

我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。

五、教学方法

发现式、启发式

新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习

六、课前准备

1.学生的学习准备:

2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:

1课时

八、教学过程

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问

1.判断函数的单调性有哪些方法?

(引导学生回答“定义法”,“图象法”。)

2.比如,要判断 y=x2 的单调性,如

何进行?(引导学生回顾分别用定义法、图象法完成。)

3.还有没有其它方法?如果遇到函数:

y=x3-3x判断单调性呢?(让学生短时

间内尝试完成,结果发现:用“定义法”,

作差后判断差的符号麻烦;用“图象法”,图象很难画出来。)

4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

(二)情景导入、展示目标。

设计意图:步步导入,吸引学生的注意力,明确学习目标。

(探索函数的单调性和导数的关系) 问:函数的单调性和导数有何关系呢?

教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:

函数及图象 单调性 切线斜率k的正负 导数的正负

问:有何发现?(学生回答)

问:这个结果是否具有一般性呢?

(三)合作探究、精讲点拨。

我们来考察两个一般性的例子:

(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)

问:能否得出什么规律?

让学生归纳总结,教师简单板书:

在某个区间(a,b)内,

若f ' (x)>0,则f(x)在(a,b)上是增函数;

若f ' (x)<0,则在f(x)(a,b)上是减函数。

教师说明:

要正确理解“某个区间”的含义,它必需是定义域内的某个区间。

1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。

2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。

3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。

4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。

应用导数求函数的单调区间

例1.求函数y=x2-3x的单调区间。

(引导学生得出解题思路:求导 →

令f ' (x)>0,得函数单调递增区间,令f ' (x)<0,得函数单调递减区间 → 下结论)

变式1:求函数y=3x3-3x2的单调区间。

(竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。)

求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:

设计例1可引导学生得出用导数法求单调区间的解题步骤

设计变式1及竞赛活动可以激发学生的`学习热情,让他们学会比较,并深刻体验导数法的优越性。

巩固提高

变式2:求函数y=3e x -3x单调区间。

(学生上黑板解答)

变式3:求函数 的单调区间。

设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。

设计变式3是可使学生体会考虑定义域的必要性

例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。

多媒体展示探究思考题。

在学生分组实验的过程中教师巡回观察指导。 (课堂实录) ,

(四)反思总结,当堂检测。

教师组织学生反思总结本节课的主要内容,并进行当堂检测。

设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)

(五)发导学案、布置预习。

设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。

九、板书设计

例1.求函数y=3x2-3x的单调区间。

变式1:求函数y=3x3-3x2的单调区间。

变式2:求函数y=3e x -3x单调区间。

变式3:求函数 的单调区间。

十、教学反思

本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

高三数学教案模板范文篇3

一、教材与学情分析

《随机抽样》是人教版职教新教材《数学(必修)》下册第六章第一节的内容,“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学‘的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础针对这样的情况,我做了如下的教学设想。

二、教学设想

(一)教学目标:

(1)理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;

(2)通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;

(3)通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。

(二)教学重点、难点

重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

为了突出重点,突破难点,达到预期的教学目标,我再从教法、学法上谈谈我的教学思路及设想。

下面我再具体谈谈教学实施过程,分四步完成。

三、教学过程

(一)设置情境,提出问题

〈屏幕出示〉例1:请问下列调查宜“普查”还是“抽样”调查?

A、一锅水饺的味道

B、旅客上飞机前的安全检查

C、一批炮弹的杀伤半径

D、一批彩电的质量情况

E、美国总统的民意支持率

学生讨论后,教师指出生活中处处有“抽样”,并板书课题——____抽样

「设计意图」

生活中处处有“抽样”调查,明确学习“抽样”的必要性。

(二)主动探究,构建新知

〈屏幕出示〉例2:语文老师为了了解电(1)班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

A、在班级12名班委名单中逐个抽查5位同学进行背诵

B、在班级45名同学中逐一抽查10位同学进行背诵

先让学生分析、选择B后,师生一起归纳其特征:

(1)不放回逐一抽样,

(2)抽样有代表性(个体被抽到可能性相等),

学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——(简单随机)抽样及其定义。

从例1、例2中的正反两方面,让学生体验随机抽样的科学性。这是突破教学难点的重要环节之一。

复习基本概念,如“总体”、“个体”、“样本”、“样本容量”等。

〈屏幕出示〉例4我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤:

(1)编号制签

(2)搅拌均匀

(3)逐个不放回抽取n次。教师板书上面步骤。

请一位同学说说例3采用“抽签法”的实施步骤。

「设计意图」

1、反馈练习落实知识点突出重点。

2、体会“抽签法”具有“简单、易行”的优点。

〈屏幕出示〉例5、第07374期特等奖号码为08+25+09+21+32+27+13,本期销售金额19872409元,中奖金额500万。

提问:特等奖号码如何确定呢?彩票中奖号码适合用抽签法确定吗?

让学生观看观看电视摇奖过程,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

(1)编号

(2)在随机数表上确定起始位置

(3)取数。教师板书上面步骤。

请一位同学说说例3采用“随机数表法”的实施步骤。

高三数学教案模板范文篇4

本文题目:高三数学教案:三角函数的周期性

一、学习目标与自我评估

1掌握利用单位圆的几何方法作函数的图象

2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3会用代数方法求等函数的周期

4理解周期性的几何意义

二、学习重点与难点

周期函数的概念,周期的求解。

三、学法指导

1、是周期函数是指对定义域中所有都有

,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度与时间之间的函数关系如图所示

(1)求该函数的周期;

(2)求时钟摆的高度。

例2、求下列函数的周期。

(1)(2)

总结:(1)函数(其中均为常数,且

的周期T=。

(2)函数(其中均为常数,且

的周期T=。

例3、求证:的周期为。

例4、(1)研究和函数的图象,分析其周期性。

(2)求证:的周期为(其中均为常数,

总结:函数(其中均为常数,且

的周期T=。

例5、(1)求的周期。

(2)已知满足,求证:是周期函数

课后思考:能否利用单位圆作函数的图象。

六、作业:

七、自主体验与运用

1、函数的周期为()

A、B、C、D、

2、函数的最小正周期是()

A、B、C、D、

3、函数的最小正周期是()

A、B、C、D、

4、函数的周期是()

A、B、C、D、

5、设是定义域为R,最小正周期为的函数,

若,则的值等于()

A、1B、C、0D、

6、函数的最小正周期是,则

7、已知函数的最小正周期不大于2,则正整数

的最小值是

8、求函数的最小正周期为T,且,则正整数

的最大值是

9、已知函数是周期为6的奇函数,且则

10、若函数,则

11、用周期的定义分析的周期。

12、已知函数,如果使的周期在内,求

正整数的值

13、一机械振动中,某质子离开平衡位置的位移与时间之间的

函数关系如图所示:

(1)求该函数的周期;

(2)求时,该质点离开平衡位置的位移。

14、已知是定义在R上的函数,且对任意有

成立,

(1)证明:是周期函数;

(2)若求的值。

高三数学教案模板范文篇5

一、教材分析

1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节,

高中数学《函数的单调性》说课稿教案模板

。是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。通过对这一节课的学习,可以让学生加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:

基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;

能力训练目标:培养学生严密的.逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,

情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

二、 教法

在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,

资料共享平台

《高中数学《函数的单调性》说课稿教案模板》

三、学法

倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了 ①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,

它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

四、 教学程序及设想

(一) 创设情境——引入概念

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

1、由具体的数列实例引入:

观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:随x的增大,y的值有什么变化。

高三数学教案模板范文篇6

一、教学目标

【知识与技能】

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】

通过对方程x+y+Dx+Ey+F=0表示圆的的条件的`探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点

【重点】

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】

二元二次方程与圆的一般方程及标准圆方程的关系。

高三数学教案模板范文篇7

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示

一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合记作N,

(2)正整数集:非负整数集内排除0的集记作N或N+

(3)整数集:全体整数的集合记作Z,

(4)有理数集:全体有理数的集合记作Q,

(5)实数集:全体实数的集合记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集记作N或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z

高三数学教案模板范文篇8

教学目标

知识目标等差数列定义等差数列通项公式

能力目标掌握等差数列定义等差数列通项公式

情感目标培养学生的观察、推理、归纳能力

教学重难点

教学重点等差数列的概念的理解与掌握

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由_《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观察————发现?

一、等差数列定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:…。

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

则由定义可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。代入通项公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=—2,先求出通项公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

练习

1、判断下列数列是否为等差数列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在数列{an}中a1=1,an=an+1+4,则a10=。

提示:d=an+1—an=—4

教师继续提出问题

已知数列{an}前n项和为……

作业

P116习题3。21,2

高三数学教案模板范文篇9

一、教学过程

1.复习。

反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。

求出函数y=x3的反函数。

2.新课。

先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):

教师在画出上述图象的学生中选定&39;

生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。

生2:这是y=x3的反函数y=的图象。

师:对,但是怎么会得到这个图象,请大家讨论。

(学生展开讨论,但找不出原因。)

师:我们请生1再给大家演示一下,大家帮他找找原因。

(生1将他的制作过程重新重复了一次。)

生3:问题出在他选择的次序不对。

师:哪个次序?

生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。

师:是这样吗?我们请生1再做一次。

(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)

师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?

(学生再次陷入思考,一会儿有学生举手。)

师:我们请生4来告诉大家。

生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。

师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?

(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)

师:怎么由y=x3的图象得到y=的图象?

生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。

师:将横坐标与纵坐标互换?怎么换?

(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)

师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?

(学生重新开始观察这两个函数的图象,一会儿有学生举手。)

生6:我发现这两个图象应是关于某条直线对称。

师:能说说是关于哪条直线对称吗?

生6:我还没找出来。

(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)

学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。

生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。

师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。

(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)

还是有部分学生举手,因为他们画出了如下图象(图3):

教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,②也不是函数的图象。

最后教师与学生一起总结:

点(x,y)与点(y,x)关于直线y=x对称;

函数及其反函数的图象关于直线y=x对称。

二、反思与点评

1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。

2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。

计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。

在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。

当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。

3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。

高三数学教案模板范文篇10

组合

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。

组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。

解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

三、教法设计

1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.

2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.

为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:

排列树图

由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

组合树图

由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.

学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.

3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.

对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.

4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是

这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.

对定理2,可启发学生从下面问题的讨论得出.从n个不同元素 ,,…,里每次取出m个不同的元素(),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有的;(3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.

对于 ,和一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.

教学设计示例

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出个元素并成一组,叫做从个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出个元素的所有组合的个数,称之,用符号表示,如从6个元素中取出2个元素的组合数为.

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出个元素的排列数,可分为以下两步:

第1步,先求出从这 个不同元素中取出个元素的组合数为;

第2步,求每一个组合中 个元素的全排列数为.

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

【例题示范 探求方法】

(教师活动)打出字幕,给出示范,指导训练.

[字幕]例1 列举从4个元素中任取2个元素的所有组合.

例2 计算:(1);(2).

(学生活动)板演、示范.

(教师活动)讲评并指出用两种方法计算例2的第2小题.

[字幕]例3 已知,求的所有值.

(学生活动)思考分析.

解 首先,根据组合的定义,有

其次,由原不等式转化为

解得 ②

综合①、②,得 ,即

[点评]这是组合数公式的应用,关键是公式的选择.

设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

【反馈练习 学会应用】

(教师活动)给出练习,学生解答,教师点评.

[课堂练习]课本P99练习第2,5,6题.

[补充练习]

[字幕]1.计算:

2.已知 ,求.

(学生活动)板演、解答.

设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

【点评矫正 交流提高】

(教师活动)依照学生的板演,给予指正并总结.

补充练习答案:

1.解:原式:

2.解:由题设得

整理化简得 ,

解之,得 或(因,舍去),

所以 ,所求

[字幕]小结:

1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.

2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.

(学生活动)交流讨论,总结记录.

设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的边上除顶点外有5个点,在边上有4个点,由这些点(包括)能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学人,依题意有,由此解得或或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用点为顶点)个四边形,个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有(种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有(种).

说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.

(2)设集合 ,如果S中元素的一个排列满足,则称该排列为S的一个错位排列.本例就属错位排列问题.如将S的所有错位排列数记为,则 有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):

高三数学教案模板范文篇11

教学准备

教学目标

数列求和的综合应用

教学重难点

数列求和的综合应用

教学过程

典例分析

3.数列{an}的前n项和Sn=n2-7n-8,

(1)求{an}的通项公式

(2)求{an}的前n项和Tn

4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=

5.已知方程(___2-2___+m)(___2-2___+n)=0的四个根组成一个首项为的等差数列,则m-n=

6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

(1)求{an}的通项公式

(2)令bn=an___n,求数列{bn}前n项和公式

7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值

.已知数列{an},an∈N______,Sn=(an+2)2

(1)求证{an}是等差数列

(2)若bn=an-30,求数列{bn}前n项的最小值

0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)

(1)设f(___)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

(2设f(___)的图象的顶点到___轴的距离构成数列{dn},求数列{dn}的前n项和sn.

11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

12.某商品在最近100天内的价格f(t)与时间t的

函数关系式是f(t)=

销售量g(t)与时间t的函数关系是

g(t)=-t/3+109/3(0≤t≤100)

求这种商品的日销售额的值

高三数学教案模板范文篇12

教学目标

1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.

(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;

(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;

(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.

2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.

3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.

关于等差数列的教学建议

(1)知识结构

(2)重点、难点分析

①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.

②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.

(3)教法建议

①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.

②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.

③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.

④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项可看作项数的一次型()函数,这与其图像的形状相对应.

⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.

⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.

⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.

高三数学教案模板范文篇13

集合的含义与表示

一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,

一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合

论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二.目标分析:

教学重点.难点

重点:集合的含义与表示方法.难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

三.教法分析

1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

四.过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;(2)我国古代的四大发明;

(3)所有的安理会常任理事国;(4)所有的正方形;

(5)海南省在20__年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学20__年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合A?{x?N1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

五.板书分析

高三数学教案模板范文篇14

(一)引入:

(1)情景1

王老汉的疑惑:秋收过后,村中拥入了不少生意人,收购大豆与红薯,精明的王老汉上了心,一打听,顿时喜上眉梢.村中大豆的收购价是5元/千克,红薯的收购价是

2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。

【问题情景使学生感受到数学是来自现实生活的,让学生体会从实际问题中抽象出数学问题的过程;通过情景我们不仅能从中引出本堂课的内容“二元一次不等式(组)的概念,及其所表示的平面区域”,也为后面的内容“简单的线性规划问题”埋下了伏笔.】

(2)问题与探究

师:同学们,你们能用具体的数字体现出王老汉的两个孙子的收购方案吗?

生,讨论并很快给出答案.(师,记录数据)

师:请你们各自为王老汉设计一种收购方案.

生,独立思考,并写出自己的方案.(师,查看学生各人的设计方案并有针对性的请几个同学说出自己的方案并记录,注意:要特意选出2个不合理的方案)

师:这些同学的方案都是对的吗?

生,讨论并找出其中不合理的方案.

师:为什么这些方案就不行呢?

生,讨论后并回答

师:满足什么条件的方案才是合理的呢?

生,讨论思考.(师,引导学生设出未知量,列出起约束作用的不等式组)

师,让几个学生上黑板列出不等式组,并对之分析指正

(教师用多媒体展示所列不等式组,并介绍二元一次不等式,二元一次不等式组的概念.)

师:同学们还记得什么是方程的解吗?你能说出二元一次方程二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的一组解吗?

生,讨论并回答(教师记录几组,并引导学生表示成有序实数对形式.)

师:同学们能说出什么是不等式(组)的解吗?你能说出二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的一组解吗?

生,讨论并回答(教师对于学生的回答指正并有选择性的记录几组比较简单的数据,对于这些数据要事先设计好并在课件的坐标系中标出备用)

(教师对引例中给出的不等式组介绍,并指出上面的正确的设计方案都是不等式组的解.进而介绍二元一次不等式(组)解与解集的概念)

师:我们知道每一组有序实数对都对应于平面直角坐标系上的一个点,你能把上面记录的不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系上标记出来吗?

生,讨论并在下面作图(师巡视检查并对个别同学的错误进行指正)

师,利用多媒体课件展示平面直角坐标系及不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的一些点,让学生观察并思考讨论:不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解在平面直角坐标系中的位置有什么特点?(由于点太少,我们的学生可能得不出结论)

师,引导学生在同一平面直角坐标系中画出方程二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解所对应的图形(一条直线,指导学生用与坐标轴的两个交点作出直线),再提出问题:二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解为坐标的点在平面直角坐标系中的位置有什么特点?

生,提出猜想:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计分得的左下半平面.

【教师通过几个简单的问题,让学生产生了利用平面区域表示二元一次不等式的想法,而后再让学生大胆的猜想,细心的论证,让他们从中让体会到对新知识进行科学探索的全过程.】

师:这个结论正确吗?你能说出理由来吗?

生,分组讨论,并利用自己的数学知识去探究.(由于没有给出一个固定的方向,所以各人用的方法不一,有的可能用特殊点再去检验,有的可能会试着用坐标轴的正方向去说明,也有的可能会用直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计下方的点与对应直线上的点对照比较的方法进行说明)

师,在巡视的基础上请运用不同方法的同学阐述自己的理由,并对于正确的作法给予表扬,然后用多媒体展示出利用与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计横坐标相同而纵坐标不同的点对应分析的方法进行证明.

师:直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的右上半平面应怎么表示?

生:表示为二元一次不等式(组)与简单的线性规划问题的模块单元教学设计,(很快回答)

师:从中你能得出什么结论?

生,讨论并得到一般性结论(教师总结纠正)

(教师总结并用多媒体展示,二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的某侧所有点组成的平面区域,因不包含边界故直线画成虚线;二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域因包含边界故直线画成实线.)

师:点O(0,0)是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计一个解吗?据此你能说出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域相对与直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的位置吗?

生,作图分析,讨论并回答(师,对学生的回答进行分析)

师:结合上面问题请同学们归纳出作不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程.

生,讨论并回答(师,对于学生的答案给以分析,并肯定其中正确的结论)

师:你们能说出作二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计对应的平面区域的过程吗?

生,讨论并回答(教师总结并用多媒体展示:直线定界,特殊点定域)

师:若点P(3,-1),点Q(2,4)在直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的异侧,你能用数学语言表示吗?

生,讨论,思考(教师巡视,并观察学生的解答过程,最后引导学生得出:一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解,一个是不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解)

师:你能在这个条件下求出二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的范围吗?

生.讨论分析,最后得到不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计并求解.

师:若把上面问题改为点在同侧呢?请同学们课后完成.

【在教师的帮助下学生通过自己的分析得出了正确的结论,让他们从中体会到了获取新知后的成就感,从而增加了对数学的学习兴趣.同时也让他们体会人们在认识新生事物时从特殊到一般,再从一般到特殊的认知过程.】

(二)实例展示:

例1、画出不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示的平面区域.

例2、用平面区域表示不等式组二元一次不等式(组)与简单的线性规划问题的模块单元教学设计的解集.

【通过利用多媒体对实例的展示让学生体会到画出不等式表示的平面区域的基本流程:直线定界,特殊点定域,而不等式(组)表示的平面区域是各个不等式表示的平面区域的公共部分.同时对具体作图中的细节问题进行点拔.】

(三)练习:

学生练习P86第1-3题.

【及时巩固所学,进一步体会画出不等式(组)表示的平面区域的基本流程】

(四)课后延伸:

师:我们在今天主要解决了在给出不等式(组)的情况下如何用平面区域来表示出来的问题.如果反过来给出了平面区域你能写出相关的不等式(组)吗?例如你能写出A(2,4),B(2,0),C(1,2)三点构成的三角形内部区域对应的不等式组吗?

你能写出不等式形如二元一次不等式(组)与简单的线性规划问题的模块单元教学设计这种不等式表示的平面区域?

(五)小结与作业:

二元一次不等式二元一次不等式(组)与简单的线性规划问题的模块单元教学设计表示直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计某侧所有点组成的平面区域,画出不等式(组)表示的平面区域的基本流程:直线定界,特殊点定域(一般找原点)

作业:第93页A组习题1、2,

补充作业:若线段PQ的两个端点坐标为P(3,-1),Q(2,4),且直线二元一次不等式(组)与简单的线性规划问题的模块单元教学设计与线段PQ

高三数学教案模板范文篇15

一、教材分析

1、教材内容

本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2、1、3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用__解决一些简单问题、

2、教材所处地位、作用

函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质、通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题、通过上述活动,加深对函数本质的认识、函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础、此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一、从方法__的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法、

3、教学目标

(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;

(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的__解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力

(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质

4、重点与难点

教学重点:

(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性

教学难点:

(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性

二、教法分析与学法指导

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性

2、在运用__解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用、具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性

在学法上:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃

13644