高三数学教案电子版
编写教案可以帮助教师规范教学流程,提高课堂教学的效率,避免随意性和盲目性。写高三数学教案电子版要注意什么?这里给大家提供高三数学教案电子版下载,供大家参考。
高三数学教案电子版篇1
《对数与对数的运算》高中数学必修一教案
一、教学目标
1、知识与技能
(1)理解对数的概念,了解对数与指数的关系;
(2)能够进行指数式与对数式的互化;
(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;
2、过程与方法
3、情感态度与价值观
(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析
分析、严谨认真的良好思维习惯和不断探求新知识的精神;
(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、
探索发现、科学论证的良好的数学思维品质、
二、教学重点、难点
教学重点
(1)对数的'定义;
(2)指数式与对数式的互化;
教学难点
(1)对数概念的理解;
(2)对数性质的理解;
三、教学过程:
四、归纳总结:
1、对数的概念
一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。
2、对数与指数的互化
ab=n?logan=b
3、对数的基本性质
负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn
五、课后作业
课后练习1、2、3、4
高三数学教案电子版篇2
数学教案-角
教学建议
一、知识结构
二、重点、难点分析
角的定义既是本节教学的重点,也是难点.本节知识建立在射线、线段等相关知识的基础上,同时也是进一步学习角的度量、比较、画法,以及深入研究平面几何图形的基础.
1.角的定义是由实际生活中具有角的形象的物体抽象出来的,理解角的定义一定要明确角的边为射线,角为平面内的点集.角也可认为是一条射线绕它的端点从一个位置旋转到另一个位置而形成的图形,这里的线动成角体现了运动变化的思想.
2.角的表示法,小学没有介绍,这里首先说明用三个字母记角.对此,要特别强调表示顶点的字母一定要写在中间,唯有在顶点处只有一个角的情况,才可只用顶点一个字母来记这个角,否则分不清这个字母究竟表示哪一个角.在讲往数字或希腊字母来记角时,可再让学生作些练习,说出所记的角怎样用三个字母来表示.
三、教法建议
1.本节教学可以在简单复习直线、射线、线段的基础上引入,将问题的研究方向转向这些最基本的几何图形与点结合以及互相结合能够组成什么图形.可以尝试让同学们摆火柴,重点应在具有角的形象的图形,然后可以在列举、观察、分析学习、生活、生产中同样具有角的形象的物体的基础上,让同学们尝试给出角的定义.
2.关于角的另一种定义,也可以通过实物演示的方式得出,冽如一手扯住线的一端,另一手拉住线的另一端旋转.重点应是对运动变化的观点的渗透.平角和周角也可以让学生给出,真正理解“平”与“直”的含义.
3.教学过程 中可以给出一些判别给定图形是不是角的练习,帮助学生理解角的相关概念.同时将角的知识与学生的生活实践紧密的结合起来.可以充分发挥多媒体教学的优势,结合图片、动画、课件辅助教学.
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解角、周角、平角及角的顶点、角的边等概念.
2.掌握角的表示方法.
(二)能力训练点
1.通过由学生观察实物图形抽象出角的定义,培养学生的抽象概括能力.通过学生独立阅读总结角的几种表示方法,培养学生的阅读理解能力.
2.通过角的两个定义的得出,培养学生多角度分析考虑问题的能力.
(三)德育渗透点
1.通过日常生活中具体的角的形象概括出角的定义,说明几何来源于生活,又反过来为生产、生活服务.鼓励学生努力学好文化知识,为社会做贡献.
2.通过旋转观点定义角,说明事物是不断变化和相互转化的,我们不能用一成不变的观点去看待某些事物.
(四)美育渗透点
通过学习角使学生体会几何图形的对称美和动态美,培养学生的审美意识,提高学生对几何的学习兴趣.
二、学法引导
1.教师教法:引导发现,尝试指导与阅读理解相结合.
2.学生学法:主动发现,自我理解与阅读法相结合.
三、重点·难点·疑点及解决办法
(一)重点
角的`概念及角的表示方法.
(二)难点
周角、平角概念的理解.
(三)疑点
平角与直线、周角与射线的区别.
(四)解决办法
通过演示法使学生正确理解平角、周角的概念,适当加以解释,简明扼要,条理清楚即可,不必做过多的解释.
四、课时安排
1课时
五、教具学具准备
投影仪(电脑、实物投影)、三角板、圆规、自制胶片.
六、师生互动活动设计
1.教师创设情境,学生进入.
2.教师步步设问,提出问题,学生在回答问题、自己画图、观察图形的过程中掌握角的静态定义.
3.教师指导,学生阅读、归纳四种表示角的方法.
4.教师用电脑直观演示展示角的旋转定义.
5.反馈练习.
6.师生讨论总结.
7.测试.
七、教学步骤
(一)明确目标
使学生能正确认识角的两种定义及相关概念,掌握角的表示方法,正确理解平角、周角的概念,并能从图形上进行识别.
(二)整体感知
以现代化教学为手段,调动学生主动参与的积极性,使学生在动手过程中自觉地掌握知识点.
(三)教学过程
创设情境,引出课题
师:前几节我们具体研究了小学时初步认识的直线、射线、线段.另外,小学时我们还认识了另一种几何图形——角.你能说出几个日常生活中给我们角的形象的物体吗?(学生会很快说出周围的课桌、门窗、墙壁的角;圆规张开两脚;钟表的时针与分针间形成的角等等.)
【教法说明】为了更形象、更直观用实物投影显示一些实物图形.
让学生说出口常生活中给我们角的形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.
师:的确如此,在我们日常生活中,角的形象可以说无处不在.因此,一些图案的设计;机械零件的制图等等,常常用到角的画法、角的度量、角的大小比较等知识.从这节课开始我们就具体地研究角.希望同学们认真学习,掌握真本领,将来为社会做贡献.
探究新知
1.角的静止观点定义的得出
提出问题:通过以上举例和小学时你对角的认识,你能画出几个不同形状的角吗?
学生活动:在练习本上,画出几个不同形状的角,找一个学生到黑板上画图.可能出现下列情况:
师:根据小学所学你能指出所画角的边和顶点吗?(学生结合自己理解和小学所学,会很快指出角的边和顶点.)
师:同学们请观察,角的两边是前面我们学过的什么图形?它们的位置关系如何?你能否根据自己的理解和刚才老师的提问,描述一下怎样的几何图形叫做角吗?
学生活动:学生讨论,然后找代表回答.
教师在学生回答的基础上,给予纠正和补充,最后给出角的正确定义.
[板书]角:有公共端点的两条射线组成的图形叫做角,这个公共端点叫角的顶点,这两条射线叫角的两边.
(出示投影1)
指出以上图形,角的顶点和角的边.
提出问题:角的大小与角两边的长短有关系吗?
学生讨论并演示:拿大小不同的两副三角板或学生的三角板与教师的三角板对比演示.让学生尽可能地发表自己的看法和观点.不要拘泥于课堂上的形式,充分调动学生回答问题的积极性.
教师对学生的回答给予肯定或否定后小结:角的两边既然是射线,则可以向一方无限延长,所以角的大小与所画角的两边长短无关,仅与角的两边张开的程度有关.
【教法说明】角的定义的得出,不是教师以枯燥的形式强加给学生,而是让学生自己在画图、观察图形的过程中,由教师引导提出问题,步步追问,自觉地去认识.在问题解决的过程中,在复习旧知识中,不知不觉学到了新知识——角.这样缩短了新旧知识间的距离,减轻了学生心理上的压力,使他们感到新知识并不难,在轻松愉快中学到了知识.同时也会感受到新旧知识之间的联系.对发展学生用普遍联系的观点看待事物有很好的作用.
2.角的表示方法
师:研究角,像直线、射线、线段一样,可以用字母表示.下面我们阅读课本第25负第三自然段,总结角的表示方法有几种,你能否准确地表示一个角并读出来.
学生活动:学生看书,可以相互讨论,然后归纳出角的几种表示方法.
【教法说明】角的四种表示方法,课本中用一自然段说明,语言通俗,很易理解,学生完全可以通过阅读,分出四个层次,四种表示角的方法.因此教师要大胆放手,培养学生阅读理解能力,归纳总结能力.
学生阅读后,多找几个学生回答.最后通过不断补充、完善,归纳整理得出角的四种表示方法,教师整理板书.
[板书]
图1 图2 图3
【教法说明】总结以上四种表示方法时,对前两种表示方法,应注意的问题要加以强调.第一种表示方法必须注意:顶点字母在中间.第二种表示方法只限于顶点只有一个角.这是以后学生书写过程中最易出错的地方.另外,让学生区分角的符号与小于号.这些应注意的问题最好由学生讨论,学生发现后归纳总结.
反馈练习:投影打出以下题目
指出图中有几个角,并用适当的方法表示它们.
3.用旋转的观点定义角
师:同学们看老师从另一个角度提出新问题.前面我们给角下过定义,是在静止的情况下,观察角是由怎样的两条射线组成.下面,我们从运动的观点观察一下角的形成.
图1
演示:教师由电脑显示一条射线,然后射线绕其端点旋转,到另一个位置停止则形成一个角,如图1所示.举例帮助学生理解:钟摆看成一条射线,从一个位置摆到另一个位置则形成一个角.
学生讨论并试述定义:学生叙述不会太严密,教师纠正、补充后板书.
【板书】角:角还可以看成是一条射线从一个位置旋转到另一个位置所形成的图形.
说明:射线旋转时,经过的部分是角的内部.让学生说明平面内除了角的内部外还有几部分,分别是什么?(角的边与角的外部)
【教法说明】角的旋转观点的定义是教学中的一个难点,学生不易理解.因此,结合电脑的显示,举出实例等手段加强教学的直观性.
4.平角、周角的概念
师:角可以看成是一射线绕其端点旋转所形成的图形.那么,旋转时有无特殊情况呢?
由电脑演示并说明:
射线 绕点 旋转,终止位置 和起始位置 成一条直线时,所成的角叫平角,如图2所示.同样可表示为 ,顶点 ,两边为射线 和射线 .继续旋转,回到起始位置 时,所成的角叫做周角,如图3所示.周角的顶点为 ,两边重合成一条射线.
图2
师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同.如:直线上取点表示点在直线上的位置,而平角是由顶点和边组成的角这一几何图形.
(2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角.
【教法说明】平角、周角概念学生不容易理解,所以要通过直观演示后教师加以解释,但也不要解释得过多.否则,学生会更糊涂,简明扼要,条理清楚即可.
反馈练习:投影显示
1.指出图中以 为顶点的平角的两边
2.指出图中(包含平角在内)的角有几个,并分别读出它们
对以上练习发现问题及时纠正.
变式练习,培养能力
投影出示:
1.如图1: 可以记作 吗?为什么?
图1
2.如图2: 、 分别是 、 上的点
① 与 是同一个角吗?
② 与 是同一个角吗?
3.如图3: 是什么角?顶点、边分别是什么?
图2 图3
【教法说明】为活跃课堂气氛,以上练习可以抢答.
(四)总结、扩展
学生看书,回答本节学了哪些主要内容,同桌可以相互讨论.最后教师按学生的回答归纳出本节知识脉络.投影显示:
八、布置作业
预习下节内容.
九、板书设计
同七、(四)中的格式,在表示方法中加上图形.
高三数学教案电子版篇3
高三数学二轮专题复习教案——数列
一、本章知识结构:
二、重点知识回顾
1.数列的概念及表示方法
(1)定义:按照一定顺序排列着的一列数.
(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.
(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.
(4)与的关系:.
2.等差数列和等比数列的比较
(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.
(2)递推公式:.
(3)通项公式:.
(4)性质等差数列的主要性质:①单调性:时为递增数列,时为递减数列,时为常数列.②若,则.特别地,当时,有.③.④成等差数列.等比数列的主要性质:①单调性:当或时,为递增数列;当,或时,为递减数列;当时,为摆动数列;当时,为常数列.②若,则.特别地,若,则.③.④,…,当时为等比数列;当时,若为偶数,不是等比数列.若为奇数,是公比为的等比数列.
三、考点剖析考点一:等差、等比数列的概念与性质
例1.(2008深圳模拟)已知数列(1)求数列的通项公式;(2)求数列解:(1)当;、当,、(2)令当;当综上,点评:本题考查了数列的前n项与数列的通项公式之间的关系,特别要注意n=1时情况,在解题时经常会忘记。第二问要分情况讨论,体现了分类讨论的数学思想.
例2、(2008广东双合中学)已知等差数列的前n项和为,且,.数列是等比数列,(其中).(I)求数列和的通项公式;(II)记.解:(I)公差为d,则.设等比数列的公比为,.(II)作差:.点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。考点二:求数列的通项与求和
例3.(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第行()从左向右的第3个数为解:前n-1行共有正整数1+2+…+(n-1)个,即个,因此第n行第3个数是全体正整数中第+3个,即为.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。
例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第个图形包含个“福娃迎迎”,则;____解:第1个图个数:1第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=,所以,f(5)=41f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。
考点三:数列与不等式的联系例5.(2009届高三湖南益阳)已知等比数列的首项为,公比满足。又已知,,成等差数列。(1)求数列的通项(2)令,求证:对于任意,都有(1)解:∵∴∴∵∴∴(2)证明:∵,∴点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n的范围证出不等式。
例6、(2008辽宁理)在数列,中,a1=2,b1=4,且成等差数列,成等比数列()(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测,的通项公式,并证明你的结论;(Ⅱ)证明:.解:(Ⅰ)由条件得由此可得.猜测.用数学归纳法证明:①当n=1时,由上可得结论成立.②假设当n=k时,结论成立,即,那么当n=k+1时,.所以当n=k+1时,结论也成立.由①②,可知对一切正整数都成立.(Ⅱ).n≥2时,由(Ⅰ)知.故综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.
例7.(2008安徽理)设数列满足为实数(Ⅰ)证明:对任意成立的充分必要条件是;(Ⅱ)设,证明:;(Ⅲ)设,证明:解:(1)必要性:,又,即充分性:设,对用数学归纳法证明当时,.假设则,且,由数学归纳法知对所有成立(2)设,当时,,结论成立当时,,由(1)知,所以且(3)设,当时,,结论成立当时,由(2)知点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。考点四:数列与函数、概率等的联系
例题8..(2008福建理)已知函数.(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(n∈N-)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.(Ⅰ)证明:因为所以′(x)=x2+2x,由点在函数y=f′(x)的图象上,又所以所以,又因为′(n)=n2+2n,所以,故点也在函数y=f′(x)的图象上.(Ⅱ)解:,由得.当x变化时,、的变化情况如下表:x(-∞,-2)-2(-2,0)0(0,+∞)f′(x)+0-0+f(x)↗极大值↘极小值↗注意到,从而①当,此时无极小值;②当的极小值为,此时无极大值;③当既无极大值又无极小值.点评:本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.
例9、(2007江西理)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()A.B.C.D.解:一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,成等差数列的概率为,选B点评:本题是以数列和概率的背景出现,题型新颖而别开生面,有采取分类讨论,分类时要做到不遗漏,不重复。
考点五:数列与程序框图的联系例10、(2009广州天河区模拟)根据如图所示的程序框图,将输出的x、y值依次分别记为;(Ⅰ)求数列的通项公式;(Ⅱ)写出y1,y2,y3,y4,由此猜想出数列{yn};的一个通项公式yn,并证明你的结论;(Ⅲ)求.解:(Ⅰ)由框图,知数列∴(Ⅱ)y1=2,y2=8,y3=26,y4=80.由此,猜想证明:由框图,知数列{yn}中,yn+1=3yn+2∴∴∴数列{yn+1}是以3为首项,3为公比的等比数列。∴+1=3·3n-1=3n∴=3n-1()(Ⅲ)zn==1×(3-1)+3×(32-1)+…+(2n-1)(3n-1)=1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)]记Sn=1×3+3×32+…+(2n-1)·3n,①则3Sn=1×32+3×33+…+(2n-1)×3n+1②①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1=2(3+32+…+3n)-3-(2n-1)·3n+1=2×=∴又1+3+…+(2n-1)=n2∴.点评:程序框图与数列的联系是新课标背景下的新鲜事物,因为程序框图中循环,与数列的各项一一对应,所以,这方面的内容是命题的`新方向,应引起重视。
四、方法总结与2009年高考预测
(一)方法总结1.求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项。
2.数列中的不等式问题是高考的难点热点问题,对不等式的证明有比较法、放缩,放缩通常有化归等比数列和可裂项的形式。
3.数列是特殊的函数,而函数又是高中数学的一条主线,所以数列这一部分是容易命制多个知识点交融的题,这应是命题的一个方向。
(二)2009年高考预测
1.数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”。但实际上,从近两年各地高考试题来看,是加大了对“递推公式”的考查。
2.探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.
3.等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题。
4.求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.
5.将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所在的分值来看,一年比一年多,而且多注重能力的考查.
6.有关数列与函数、数列与不等式、数列与概率等问题既是考查的重点,也是考查的难点。今后在这方面还会体现的
高三数学教案电子版篇4
一、过程目标
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体
高三数学教案电子版篇5
一、教学目标
【知识与技能】
在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】
通过对方程x+y+Dx+Ey+F=0表示圆的的条件的`探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】
渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点
【重点】
掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】
二元二次方程与圆的一般方程及标准圆方程的关系。