高一数学电子版教案
教案的编写应注重简洁明了、重点突出、条理清晰、可操作性强等特点,以便更好地指导教学工作。高一数学电子版教案要怎么写?接下来给大家带来高一数学电子版教案,方便大家学习。
高一数学电子版教案篇1
一、教材分析
本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。
生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。
二、学生学习情况分析
函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:
(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;
(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;
(三)高中用导数工具研究函数的单调性和最值。
1.有利条件
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件
用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析
课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.
1.知识与能力目标:
⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;
⑵理解函数的三要素的含义及其相互关系;
⑶会求简单函数的定义域和值域
2.过程与方法目标:
⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;
⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.
3.情感、态度与价值观目标:
感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
四、教学重点、难点分析
1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;
重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。
突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。
2.教学难点:
第一:从实际问题中提炼出抽象的概念;
第二:符号“y=f(x)”的含义的理解.
难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。
突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。
五、教法与学法分析
1.教法分析
本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。
2.学法分析
在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。
高一数学电子版教案篇2
各位评委、老师,大家好!
今天我要进行说课的框题是《价格变动的影响》。下面,我将从对教材的理解、对学生的分析、教法和学法、教学过程和板书设计几个方面来具体阐述。
一、首先,我们来认识教材、把握教材
1、说本框的地位和作用
《价格变动的影响》是人教版教材高一政治必修1第一单元第2课第2个框题,该框的内容实质上讲的是价值规律的作用,是第一单元《生活与消费》的重点和核心。学生在前面已经学习的货币的有关知识和价格变动的原因,为本框题的学习作了铺垫,本框题正是承接这两部分(货币的有关知识和价格变动的原因)内容,同时为第3课《多彩的消费》的学习打下基础,因此具有承上启下的作用,在经济常识中具有不容忽视的重要的地位。
2、说教学目标
关于本课,课程标准是这样要求的:归纳影响商品价格变化的`因素,理解价格变动的意义,评价商品和服务的变化对我们生活的影响。
在认真解读课程标准的前提下,根据学生的实际情况,我设立以下教学目标:
(1)知识方面:通过本框学习,使学生懂得价格变动与商品需求量之间的一般规律;面对价格的变动,知道不同商品的需求弹性不同,以及价格变动对相关商品需求量的影响。
(2)能力方面:通过本框学习,使学生能够运用价格变动对生活的影响分析相关的生活现象及解决实际生活的实践能力,培养学生透过现象看本质的能力,从而提高学生参与经济生活的水平。
(3)情感态度价值观:通过学习,使学生关心生活中的小事,认识价格的变动,增强参与经济生活的自主性,树立竞争意识,以适应激烈的市场竞争。
3、说教学重难点
重点:价格变动对人们生活和生产的影响
难点:价格变动对替代品与互补品的影响
二、说对学生的分析
高一学生对经济生活的内容很感兴趣,对经济生活中的现象有一定程度的关注和了解,有利于教学活动的开展,但我的学生主要来自农村,知识面有待拓展,表达能力也有待提高,因此我选择与生活有密切关联的、贴近学生实际的事例为主进行分析,以便激发学生的学习兴趣和参与热情,提高学生的积极性。
三、说教法和学法
(1)接下来说说我将采用的教学方法
以多媒体为辅助教学手段,采用情景探究法。第一步,创设情景,提出问题;第二步,小组讨论,自主探究;第三步,师生互动,建构知识。
(2)接下来再说说我对学生学法的指导
本着以学生为本的理念,着眼于学生的终身发展,在传授知识的同时,更加注重学习的过程,更加注重能力的培养,因而我采用了新课程提倡的自主学习、合作学习和探究学习。
四、下面我重点介绍一下我的教学过程的设计
1、创设情景,导入新课
俗话说:好的开端是成功的一半。因此在导入新课时如果能创设学生感兴趣的情境就能把学生的注意力集中起来,调动学生的积极性,引起学生的求知欲。
所以我首先在导入时创设情境:
情景设置一:《美国人梦想的破灭》这个情景讲述的是美国人生来就有这样一个梦想——有房有车。房子要大大的,前有花园,后有游泳池;汽车要豪华加长型,看着气派,跑起来威风,驾驶起来也舒适。然而,美国人的梦想正在破灭。由于次贷危机,即购房贷款不能按时缴纳而面临被银行拍卖,这使前一个梦想破灭;而后一个梦想也濒临灭亡!原因何在?石油价格的上涨(多媒体同时显示:国际油价变动情况简介:20__年28$/桶20__年120$/桶20__年82$/桶)。美国人生活区和工作地有时距离上百公里,驱车往返使美国人不堪负重。还有部分美国人不得不辞去在外地的工作转而就近就业,导致部分公司缺少员工,企业生产无法正常进行,为了留住人才,公司增加了外地工人的补贴,使企业的成本增加。由此可见,商品价格的涨跌对人们生活有重大影响,甚至影响人们的生活方式,进而影响企业的生产。
设计此例目的有二:一是调动学生的积极性,学生对美国任何风吹草动都感兴趣,特别是不利的事情;二是此例在第3课《影响消费水平的因素》可继续使用,达到一材多用的目的。
在此基础上自然过渡到本框内容:既然价格变动对人们的生活生产有这么重大的影响,那就让我们共同了解和学习价格变动的影响(在黑板上同时板书)。
2、在推进新课时我创设这样一个情景——《请给老师提点建议》
情景设置二:《请给老师提点建议》:"老师现在需要一个交通工具,可以选择的有小汽车、摩托和电动车。我该怎么选择呢?"
之所以设计这样的案例,因为他们会觉得:老师也需要我的帮助?继而会以帮助老师为荣,积极的"献计献策",从而活跃课堂气氛,进一步调动学生的积极性。
学生此时会迫不及待地帮老师进行选择,大部分学生会鼓动老师选择小汽车,首先调动起学生的参与热情。
我继续介绍相关情况:"家用小汽车售价一般在5到6万元,摩托车售价在5000元上下,电动车大约20__元。"小汽车老师是买不起的,因为价格太高了。我想其他人也会限于价格而购买者只能是一部分人。这说明了价格影响人们的需求量。价格高,人们减少对它的购买;如果汽车价格降至和摩托车差不多呢?(学生会哄笑"我们都买一辆",有学生会提出异议:不可能,价值决定价格)学生会七嘴八舌地表达自己的想法,而这,正是我要达到的效果。
我会在此基础上反问:"同学们想一想,如果大米的价格也大幅下降,人们对它的需求会不会骤然增多呢?"学生自然知道不会。如果大米的价格大幅度上涨,会减少对它的需求量吗?同样不会。于是可以得出结论:价格变动会引起需求量变动,但不同商品的需求量对价格变动的反应程度是不同的。价格变动对生活必需品需求量的影响比较小,对高档耐用品需求量的影响比较大。
"不降价我就不买了,那我只能在后两种中选择了".
同时提出两个问题:以多媒体方式显示
◆我能不能两个都买?为什么?
◆我如果不能都去选择,如果从经济实用的角度考虑,我该选哪一个?受什么影响呢?
请你提出中肯的建议,并说出选择的理由。
要求学生用3分钟时间阅读教材P15第3~5自然段。
同时用多媒体出示相关内容:"摩托车每百公里耗油量一般3升左右,每升约6元,电动车每百公里耗电量约15度,每度0.56元。"
学生通过对问题的思考与回答,结合课本自觉,他们会帮老师做出正确的选择:只能买一个——电动车。而通过理由的阐述,学生明白了摩托车和电动车是互为替代品,而对于两者进行选择时还得考虑相关的商品,就懂得了还受油价和电价的制约,了解了什么是互补商品,较易得出相关商品价格的变动对消费者需求的影响:一种商品价格上升,需求量会减少,会导致它的互补商品的需求量也减少;一种商品价格上升,需求量减少,会导致它的替代商品的需求量增加。这样学生就知道了,消费者对既定商品的需求不仅受该商品自身价格变动的影响,而且受相关商品价格变动的影响。
这就是价格变动对生活的影响,对生产经营有什么影响呢?
情景设置三:《大蒜价格的变动》。这是日常生活当中常见的,学生有深切的感受,会说出价格:5、6元一斤!引导学生思考大蒜价格的变化情况,学生说过之后用多媒体出示大蒜价格近四年来的变化。07——09.4月间,价格在0.2元/斤,09年5月份以来至今逐渐涨到了5、6元/斤,时达到8.5元/斤。
现在思考:
◆大蒜价格的涨落是怎样影响蒜农生产活动的?
◆如果我们设想,大蒜价格今后会怎样变化,原因是什么?蒜农该如何应对这种变化?
让学生前后四人为一组,用3到5分钟边阅读教材P16边进行讨论分析。由于学生主要来自农村,对此比较熟悉,甚至自己家就种植过大蒜或正在种植,有切身感受,不难得出结论:面对商品价格变动,生产者一般会调节生产,提高劳动生产率,生产适销对路的高质量产品。即价格变动对生产经营的影响。
之所以这样设计,因为这部分知识是本节课要掌握的重点所在,与学生生活实际结合的比较紧密,理论难度又不大,这样由他们自已讨论得出知识,可以增强他们的自信心,充分调动他们学习的主动性和积极性,使他们真正成为学习的主人,同时在自主探究与小组讨论的过程中,让他们学着如何自主探究学习,如何与人合作学习,最终使他们真正会学习。
在这里,我对课本上的价格与供求关系图有不同意见。我觉得如果把"价格变动"放在两头,效果会更好,也更直观的表现是由于价格的变动引起生产规模的变化。(同时用多媒体展示这一变化)
3、当堂处理一些练习题,以练习巩固学生刚掌握的知识及对知识的理解程度。在这一环节中,我会利用学生手中已有的资料,处理随堂训练。大约5——8分钟。
4、最后我预留出5分钟时间给学生自由提问,可以是本节有关内容的理解,也可以是有关的生活中遇到的不太理解的经济现象,我将力求给学生一个合理的解释,如果我也不明白,将如实告诉学生,我会下去查资料,我也要继续学习,提高自己,在下节上课时给予解决。
这所以这样设计,是要给学生一个表达自己的机会,锻炼发言的能力,同时给学生质疑与拓展开放的时空。我相信学生:我给学生一个天地,他们还我一个惊喜!
5、作业布置:做《优化探究》最后一个主观题。
五板书设计:
各位领导、老师,我今天的说课到此结束,请各位老师多提意见,谢谢!
高一数学电子版教案篇3
【内容与解析】
本节课要学的内容有函数的概念指的是函数的概念及符号的理解,理解它关键就是能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用。学生已经学过了集合并且初中对函数的概念已经作了介绍,本节课的内容函数的概念就是在此基础上的发展的。由于它还与基本初等函数和函数模型等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是函数的概念,函数的三要素,所以解决重点的关键是通过实例领悟构成函数的三个要素;会求一些简单函数的定义域和值域。
【教学目标与解析】
1、教学目标
(1)理解函数的概念;
(2)了解区间的概念;
2、目标解析
(1)理解函数的概念就是指能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】
在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的`高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有唯一的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有唯一的一个臭氧层空洞面积S与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
问题4:上述三个实例中变量之间的关系都是函数,那么从集合与对应的观点分析,函数还可以怎样定义?
4.1在一个函数中,自变量x和函数值y的变化范围都是集合,这两个集合分别叫什么名称?
4.2在从集合A到集合B的一个函数f:A→B中,集合A是函数的定义域,集合B是函数的值域吗?怎样理解f(x)=1,x∈R?
4.3一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?
【例题】:
例1求下列函数的定义域
分析:求定义域就是使式子有意义的x的取值所构成的集合;定义域一定是集合!
例2已知函数
分析:理解函数f(x)的意义
例3下列函数中哪个与函数相等?
例4在下列各组函数中与是否相等?为什么?
分析:
(1)两个函数相等,要求定义域和对应关系都一致;
(2)用x还是用其它字母来表示自变量对函数实质而言没有影响.
【课堂目标检1测】
教科书第19页1、2.
【课堂小结】
1、理解函数的定义,函数的三要素,会球简单的函数的定义域和函数值;
2、理解区间是表示数集的一种方法,会把不等式转化为区间。
高一数学电子版教案篇4
各位,下午好:
今天我说课的课题是古诗《迢迢牵牛星》。接下来,我对本课题进行分析:
一、说教材的地位和作用
《迢迢牵牛星》是编排在粤教版全日制普通高级中学教科书语文必修1第四单元第四个课题《汉魏晋诗三首》中的其中一首。“在心为志,发言为诗”,“情动于中而形于言”。诗歌是诗人真情实感的咏唱,是心灵对现实的应答。《古诗十九首》映了时代的动荡,社会的乱离《迢迢牵牛星》借牛郎织女的故事,寄托织女的相思之苦,形象地抒发了现实生活中男女情人咫尺天涯的哀怨,表达了渴望夫妻团圆的强烈愿望。通过学习本文,将使学生进一步学会诗歌鉴赏的方法,培养人文素养。在此之前,学生们已经学习了《诗经》两首、《离骚(节选)》、《孔雀东南飞》,这为过渡到本课题的学习起到了很好的铺垫作用。因此,学好本课为学好以后的诗歌可以打下牢固的理论基础,而且它在整个教材也起到了承上启下的作用。本课包含的一些重要的知识点和思想,为以后学生在学习理解类似的诗歌并为简单地鉴赏诗歌打下坚实的基础。
二、说教学目标
根据本教材的结构和内容分析,结合着高一年级学生他们的认知结构及其心理特征,我制定了以下的教学目标:
1.知识目标:了解《古诗十九首》相关知识,有节奏地朗读诗歌并背诵全诗。
2.技能目标:会分析诗歌的情感,能简单分析诗歌叠音词作用和表达效果。
3.情感与价值观目标:品味《迢迢牵牛星》诗中的爱情美,理解诗歌所表达出的渴望普天下夫妻团聚的愿望。
三、说教学的重难点
本着对高中语文新课程标准的理解,在吃透教材基础上,我确定了以下教学重点和难点。
1.教学重点:分析诗歌中叠音词作用和表达效果,掌握鉴赏此类诗歌的技巧。
2.教学难点:据学生的认知特点,牵牛织女星等天文知识、光年的定义的理解是教学的难点。
3.确立重点和难点的依据是:天文知识、光年较抽象,学生欠缺这方面的基础知识。
为了讲清教材的重难点,使学生能够达到本课题设定的教学目标,我再从教法我学法上谈谈。
四、说教法
我们都知道语文是一门提高人文素养,培养人的鉴赏能力的重要学科。因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体又为客体的原则下,展现获取理论知识、解决实际问题的思维过程。
考虑到高一级学生的现状,我主要采取朗读法、讲授法、读写结合法,心理学理论告诉我们:学生的学习情绪直接影响学习效果。因此我还采用多媒体为教学手段的情景教学方法,创设情境帮助学生理解诗歌,利用叠音词串联诗歌,充分调动学生积极主动地参与到教学活动中来,使他们在活动中得到认识和体验。当然老师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。基于本课题的特点,我主要采用了以下的教学方法:
1.朗读法:“三分诗七分读”。从教学过程来说,教学中将朗读教学贯彻到课堂始终,教师示范朗读,引导学生按要求听读,帮助学生深入体会课文的情感意蕴,学生通过反复的朗读,加深对课文的理解,培养学生的语感。
2.讲授法:教师通过口头语言向学生传授知识、培养能力、进行思想教育。按照彻启发式教学原则,讲授的内容突出本课的的重点、难点和关键,使学生随着教师的讲解或讲述开动脑筋思考问题,讲中有导,讲中有练。使学生主体作用凸显出来,把课堂进行得生动活泼,而不是注入式。
3.读写结合法:注重读写结合,在熟读的基础上,让学生对教材后面的叠词练习进行快速地思考,组织答案,我来总结这类题目的答题技巧和规律。这不仅有助于学生对诗歌叠音词的理解,而且提高了学生的诗歌鉴赏能力。
五、说学法
根据本文篇幅简短,又是浅显的文言文的特点,要求学生课前必须进行预习,并利用课下注释和工具书来疏通文意。让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正的主人。在课堂上,通过朗读和提问法去推动学生思考,进一步理解文章的内容,调动学生学习的积极性,读出初步真实感受。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、总结反思法。
最后我具体来谈谈这一堂课的教学过程。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理,各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。
1.导入新课:
提问学生是否知道中国古代四大爱情故事,从学生的回答情况中引出本节课的主题牛郎织女的故事。在此之后,请一位男生和一位女生起来讲述他们所了解到的牛郎织女的爱情故事,总结学生的回答情况,并由我来详细地向学生交代故事的起源、发展,最重要的是突出这样一个常识让传说与课文有了紧密的切合点,牛郎和织女是因为王母娘娘的一根发簪化成的银河而相隔两地,不得相见,后来真情感动天地,遂允许二人七月七日相见。
2.示范朗读:
教师朗读全文,学生按要求在书中画出容易读错的多音字词。教师用语言鼓励学生,请学生给老师挑刺(教师故意读错某个词),欢迎学生与教师竞争。这样既能使学生的注意力集中到听读上,同时又能激气学生当堂背下诗歌的兴趣和信心。
3.学生朗读:
朗读是诗歌教学中必不可少的手段,应反复进行。要引导学生采用轮读、个读、听读、小组读等多形式朗读,以读带动对课文的理解,使学生以读为乐。
4.学生背诵
在经过反复的听读和朗读之后,学生已经基本能粗略知道诗歌大意,在此基础上,要求学生根据自己的情况即时背诵,教师根据学生的不同情况引导以诗歌的思想内容。
5.板书设计:
我比较注重直观地、系统的板书设计,并及时地体现教材中的知识点,以便于学生能够理解掌握。我的板书设计是:
6.布置作业。
我布置的课堂作业是:《一号》P110页第三题
七、我为什么要这样上课
1.对教材内容的处理。
根据新课程标准的要求、知识的跨度、学生的认知水平,我对教材内容的增有减。
2.教学策略的选用
(1)重点字词如多音字读音让学生动手去查阅,自己作初步的记忆,教师扮演辅导者的角色。这样有利于学生能力的提高,有利于学生对诗歌学习兴趣的培养。通过对《古诗十九首》及《迢迢牵牛星》的文学常识和背景知识的介绍,激发学生了解古诗的兴趣,有利于提高学生学习的积极性。
(2)让学生巩固重点知识并形成新的知识。通过布置作业,让学生背诵课文,使他们进一步的理解文章,梳理思路,提高诗歌鉴赏阅读的语感和鉴赏的思路。完成《一号》的习题,有利于学生对诗歌的深刻理解,对以后的古诗学习打下坚实的基础。
八、结束语
各位领导、老师们,本节课我根据高一年级学生的心理特征及其认知规律,采用直观教学和讨论法的教学方法,以‘教师为主导,学生为主体’,教师的“导”立足于学生的“学”,以学法为重心,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂气氛中提高自己的认识水平,从而达到预期的教学效果。我的说课完毕,谢谢!
高一数学电子版教案篇5
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N_或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_
课堂练习:教材第5页练习A、B
小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
高一数学电子版教案篇6
第一节集合的含义与表示
学时:1学时
[学习引导]
一、自主学习
1.阅读课本.
2.回答问题:
⑴本节内容有哪些概念和知识点?
⑵尝试说出相关概念的含义?
3完成练习
4小结
二、方法指导
1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。
2、理解集合元素的特性,并会判断元素与集合的关系
3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。
4、在学习中要特别注意理解空集的意义和记法
[思考引导]
一、提问题
1.集合中的元素有什么特点?
2、集合的常用表示法有哪些?
3、集合如何分类?
4.元素与集合具有什么关系?如何用数学语言表述?
5集合和是否相同?
二、变题目
1.下列各组对象不能构成集合的是()
A.北京大学2008级新生
B.26个英文字母
C.著名的艺术家
D.2008年北京奥运会中所设定的比赛项目
2.下列语句:①0与表示同一个集合;
②由1,2,3组成的集合可表示为或;
③方程的解集可表示为;
④集合可以用列举法表示。
其中正确的是()
A.①和④B.②和③
C.②D.以上语句都不对
[总结引导]
1.集合中元素的三特性:
2.集合、元素、及其相互关系的数学符号语言的表示和理解:
3.空集的含义:
[拓展引导]
1.课外作业:习题11第题;
2.若集合,求实数的值;
3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.
撰稿:程晓杰审稿:宋庆
高一数学电子版教案篇7
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
例 2 ⑴求函数y=的定义域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要使函数有意义。若函数中含有分母,分母不为零;有偶次根式,被开方式大于或等于零;若函数中有对数的形式,则真数大于零,如果函数中同时出现以上几种情况,就要全部考虑进去,求它们共同作用的结果。)生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。
板书:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
师:接下来我们一起来解这个不等式。
分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,再根据对数函数的单调性求解。
师:请你写一下这道题的解题过程。
生:<板书>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解为:1
例 3 求下列函数的值域和单调区间。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。
下面请同学们来解⑴。
生:此函数可看作是由y= log0.5u, u= x- x2复合而成。
板书:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)
注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则函数都不存在,性质就无从谈起。
师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什么区别?
生:⑴的底数是常值,⑵的底数是字母。
师:那么⑵如何来解?
生:只要对a进行分类讨论,做法与⑴类似。
板书:略。
⒊小结
这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。
⒋作业
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)
⑵已知函数y=loga(x2-2x),(a>0,a≠1)
①求它的单调区间;②当0
⑶已知函数y=loga (a>0, b>0, 且 a≠1)
①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。
⑷已知函数y=loga(ax-1) (a>0,a≠1),
①求它的定义域;②当x为何值时,函数值大于1;③讨论它的单调性。
5.课堂教学设计说明
这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一 .比较数的大小,想通过这一部分的练习,
培养同学们构造函数的思想和分类讨论、数形结合的思想。二.函数的定义域, 值 域及单调性,想通过这一部分的练习,能使同学们重视求函数的定义域。因为学生在求函数的值域和单调区间时,往往不考虑函数的定义域,并且这种错误很顽固,不易纠正。因此,力求学生做到想法正确,步骤清晰。为了调动学生的积极性,突出学生是课堂的主体,便把例题分了层次,由易到难,力求做到每题都能由学生独立完成。但是,每一道题的解题过程,老师都应该给以板书,这样既让学生有了获取新知识的快乐,又不必为了解题格式的不熟悉而烦恼。每一题讲完后,由教师简明扼要地小结,以使好学生掌握地更完善,较差的学生也能够跟上。
高一数学电子版教案篇8
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学电子版教案篇9
一、教学目标
1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。
2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。
3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。
二、教学重难点
重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。
难点:找对题目中的数量关系从而列出一元二次方程。
三、教学过程
(一)导入新课
师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?
生:老师,这是雷锋叔叔。
师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?
生:是的老师。
师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?
生:想。
师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学一元二次方程。
(二)新课教学
师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。
(下去巡视)
(三)小结作业
师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。
四、板书设计
五、教学反思
高一数学电子版教案篇10
【学习目标】
1、感受数学探索的成功感,提高学习数学的兴趣;
2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。
3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。
【学习重点】三角函数的诱导公式的理解与应用
【学习难点】诱导公式的推导及灵活运用
【知识链接】(1)单位圆中任意角α的正弦、余弦的定义
(2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标
【学习过程】
一、预习自学
阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:
(1)-407[导学案]4.4单位圆的对称性与诱导公式与407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(2)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(3)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(4)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
二、合作探究
探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。
(1)407[导学案]4.4单位圆的对称性与诱导公式(2)407[导学案]4.4单位圆的对称性与诱导公式(3)sin(-1650°);
探究2:化简:407[导学案]4.4单位圆的对称性与诱导公式407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)
探究3、利用单位圆求满足407[导学案]4.4单位圆的对称性与诱导公式的角的集合。
三、学习小结
(1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?
(2)本节学习涉及到什么数学思想方法?
(3)我的疑惑有
【达标检测】
1、在单位圆中,角α的终边与单位圆交于点P(-407[导学案]4.4单位圆的对称性与诱导公式,407[导学案]4.4单位圆的对称性与诱导公式),
则sin(-α)=;cs(α±π)=;cs(π-α)=
2.求下列函数值:
(1)sin(407[导学案]4.4单位圆的对称性与诱导公式)=;(2)cs210&rd;=
3、若csα=-1/2,则α的集合S=
高一数学电子版教案篇11
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学电子版教案篇12
初中数学知识所复习的内容面广量大,知识点多,要想在短暂的时间内全面复习初中所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事。而且今年为了减轻学生的课业负担,要求学校停止二课和晚自习,这样更减少了复习是家时间。如何提高复习的效率和质量,成为了我们初三数学老师关心的问题。为此,通过我们三人的研究,制定了切实可行的复习计划,能让复习有条不紊地进行下去,起到事半功倍的效果。
第一轮以知识立意,突出“基础性”,追求数学内容的本质理解,全面梳理知识,侧重双基(基础知识、基本技能),所选素材难度以中档以下为主,时间为2月中旬到4月中旬,约两月时间;
应该注意的几个问题:
(1)必须扎扎实实地夯实基础。
(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
(3)不搞题海战术,精讲精练,举一反三、触类旁通。
第二轮以能力立意,突出“发展性”,追求数学素养的全面提升,侧重数学思想方法、数学基本活动经验,适当加强综合,所选题难度以中档为主,时间为4月中旬至5月下旬,约一个月时间。应该注意的几个问题:
(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。
(2)专题的选择要准、安排时间要合理。
第三轮以状态为立意,突出“综合性”,追求数学水平的有效发挥,侧重培养学生应试技能,时间约20天。
第三轮复习应该注意的几个问题:
(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。
(2)模拟题的设计要有梯度,立足中考又要高于中考。
(3)批阅要及时,趁热打铁,切忌连考两份。
(4)评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。
(5)归纳学生知识的遗漏点。为查漏补缺积累素材。
(6)选准要讲的题,要少、要精、要有很强的针对性。
(7)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。教师要充分利用这段时间,解决个别学生的个别问题。
(8)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的状态。
高一数学电子版教案篇13
一、教学过程
1.复习
反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。
求出函数y=x3的反函数。
2.新课
先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象:
教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。
生2:这是y=x3的反函数y=的图象。
师:对,但是怎么会得到这个图象,请大家讨论。
(学生展开讨论,但找不出原因。)
师:我们请生1再给大家演示一下,大家帮他找找原因。
(生1将他的制作过程重新重复了一次。)
生3:问题出在他选择的次序不对。
师:哪个次序?
生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。
师:是这样吗?我们请生1再做一次。
(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)
师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?
(学生再次陷入思考,一会儿有学生举手。)
师:我们请生4来告诉大家。
生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。
师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的关系,同学们能不能看出这两个函数的图象有什么样的关系?
(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)
师:怎么由y=x3的图象得到y=的图象?
生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。
师:将横坐标与纵坐标互换?怎么换?
(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)
师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?
(学生重新开始观察这两个函数的图象,一会儿有学生举手。)
生6:我发现这两个图象应是关于某条直线对称。
师:能说说是关于哪条直线对称吗?
生6:我还没找出来。
(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)
学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。
生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。
师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。
(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)
教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(x∈R)没有反函数,②也不是函数的图象。
最后教师与学生一起总结:
点(x,y)与点(y,x)关于直线y=x对称;
函数及其反函数的图象关于直线y=x对称。
二、反思与点评
1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。
2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。
计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。
在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。
当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。
3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。
高一数学电子版教案篇14
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
高一数学电子版教案篇15
学习目标
1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2、掌握标准方程中的几何意义
3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
一、预习检查
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、
3、双曲线的渐进线方程为、
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、
二、问题探究
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、
探究2、双曲线与其渐近线具有怎样的关系、
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、
例1根据以下条件,分别求出双曲线的标准方程、
(1)过点,离心率、
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、
例3(理)求离心率为,且过点的双曲线标准方程、
三、思维训练
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、
2、椭圆的离心率为,则双曲线的离心率为、
3、双曲线的渐进线方程是,则双曲线的离心率等于=、
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、
四、知识巩固
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、