高一数学教案简短模板下载
教案中的教学目标应该清晰明确,具体可行,并与学生的实际情况相结合。想知道如何写出优秀的高一数学教案简短模板下载吗?这里为大家分享高一数学教案简短模板下载,快来学习吧!
高一数学教案简短模板下载篇1
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情
学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标
(一)知识与技能目标
能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标
经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标
激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点
(一)重点
用解析法研究直线与圆的位置关系。
(二)难点
体会用解析法解决问题的数学思想。
五、教学方法
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
六、教学过程
(一)导入新课
教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?
教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。
设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。
(二)新课教学——探究新知
教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。
判断方法:
(1)定义法:看直线与圆公共点个数
即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。
(2)比较法:圆心到直线的距离d与圆的半径r做比较,
(三)合作探究——深化新知
教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。
已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?
让学生自主探索,讨论交流,并阐述自己的解题思路。
当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。
(四)归纳总结——巩固新知
为了将结论由特殊推广到一般引导学生思考:
可由方程组的解的不同情况来判断:
当方程组有两组实数解时,直线l与圆C相交;
当方程组有一组实数解时,直线l与圆C相切;
当方程组没有实数解时,直线l与圆C相离。
活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。
(五)小结作业
在小结环节,我会以口头提问的方式:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。
七、板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高一数学教案简短模板下载篇2
一、教学目标
1.知识与技能
(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;
(2)体会程序化解决问题的思想,为算法的学习作准备。
2.过程与方法
(1)让学生在求解方程近似解的实例中感知二分发思想;
(2)让学生归纳整理本节所学的知识。
3.情感、态度与价值观
①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;
②培养学生认真、耐心、严谨的数学品质。
二、教学重点、难点
重点:用二分法求解函数f(x)的零点近似值的步骤。
难点:为何由︱a-b︳<便可判断零点的近似值为a(或b)?
三、学法与教学用具
1.想-想。
2.教学用具:计算器。
四、教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.
生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。
2.为什么由︱a-b︳<便可判断零点的近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a
0
由于︱a-b︳<,所以
︱x0-a︳
即a或b作为零点x0的近似值都达到了给定的精确度。
(三)、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)
问题:原方程的近似解和哪个函数的零点是等价的?
师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业
P92习题3.1A组第四题,第五题。
高一数学教案简短模板下载篇3
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.
高一数学教案简短模板下载篇4
1、知识与技能
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
2、过程与方法
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.
3、情态与价值
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
教学重难点
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
高一数学教案简短模板下载篇5
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
高一数学教案简短模板下载篇6
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
高一数学教案简短模板下载篇7
一、说教材
(一)说教材的地位和作用
在此之前,学生们已经学习了公民的政治生活和为人民服务的政府两个单元,本单元在内容上是前两个单元的延伸和深化,也是政治生活的核心内容。本框题的学习是为后一框题作铺垫,是以后政治学习中不可缺少的部分,也是往年高考的必考内容。
(二)说教学目标
1、知识目标:知道人民代表大会是我国的国家权力机关;了解人民代表大会的主要职权;了解人民代表的法律地位、权力和义务。
2、能力目标:提高运用马克思主义立场、观点、方法分析政治生活的能力;增强收集材料的能力,能够从报刊、书籍等渠道查阅、收集人民代表大会有关资料用于学习。
依据:美国心理学家加涅"为学习设计教学"的主张(学习放在一定的情境中进行);美国布鲁纳"发现法"(重视学生的学习信心和主动精神)。
3、情感、态度与价值观目标:培养学生的政治素养、合作学习的团队精神。
依据:学习的迁移性原则;皮亚杰发展心理学理论,主张内外因相互作用的发展观。
(三)说教学的重、难点
教学重点、难点:人民代表大会及人民代表大会的职权。
依据:本节内容不仅是高考的重点,也是考试易错点。
(四)说教学模式:"设疑—探究—归纳—提高"。
依据:皮亚杰建构主义教学理论,认为学生是在同周围环境的相互作用的过程中,建起关于外部世界的知识,从而使自身认识结构得到发展;美国布鲁纳动机性原则,教师要充分注重学生的内在动机,这是教学成败异常重要的因素。
二、说教法
政治是一门培养人的实践能力的重要学科。因此,在教学过程中,不仅要使学生"知其然",还要使学生"知其所以然"。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
考虑到我校高一年级学生的现状,我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,发展思辩能力,注重学生的心理状况。同时,由于教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。同时也体现了课改的精神。基于本框题的特点,我主要采用了以下的教学方法:
1、演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
2、探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。
3、讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
三、说学法
我们常说:"现代的文盲不是不会字的人,而是没有掌握学习方法的人",因而,我在教学过程中特别重视学法的指导。让学生从机械的"学、答"向"学、问"转变,从"学会"向"会学"转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。
四、说教学过程(说下教学流程,如:由人大图片导入新课——学生探究和分组讨论:如,人民是怎样行使国家权力?我国的国家机关是怎样构成的?——教师点评—小结)
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。安排如下:
(一)创设情景,激趣引入
(二)围绕中心,突出重点
(三)层层深入,突破难点
(四)归纳小结,交流感悟
(五)课后拓展,注重实践
1、导入新课:(2分钟)
课件展示出:20__年3月的相关图片。 教案 导语设计的依据:以图片和视频提高学生的兴趣,使学生明确本节课要讲述的内容,以激发起学生的求知欲望。这是政治教学非常重要的一个环节。
2、讲授新课:(讲授15分钟,学生合作探究15分钟)
(1)人民怎样当家作主(如人民—代表—各级人大—组成国家权力机关—产生行政,审判机关或决定国家重大事务)从这个示意图可看出,我国人民行使国家权力的机关是什么?(提问下)
通过学生对学过知识的复习,让学生同桌讨论,总结人民当家作主的过程。
以这样的方式既可以考察学生对学过知识的掌握,又可以引导学生进入新课。通过同桌之间讨论,提高学生参与课堂能力及总结能力。
(2)肩负着人民重托(结合他的产生,他的地位,有那些权利,对人大代表是一种责任的理解,什么样的人可当选人大代表?)也可模议:假如我是人大代表?
以人大代表代表人民帮助人民解决问题的材料,指导学生总结人大代表和人民的关系及权力和职责。
以给出材料的方式,启发学生独立思维的能力,并能联系实际,灵活运用,提高学生的分析能力。
(3)人民行使国家权力的机关(可结合今年人大会议议程分析出全国人大的职权?全国人大与其常委会的关系?)通过学生自我阅读教材后,小组合作,共同探究人民代表大会的性质、地位、职权及常设机关,重点讨论其职权。讨论过程中教师引导学生并,展示所收集的与人民代表大会的职权相关的图片,和学生一起享受讨论成果。
①通过阅读,培养学生良好的自主学习习惯;同时以问题教法开始,由易到难设计题目,符合学生认知特点和认知规律。
②经过讨论交流,培养学生与他人合作学习和沟通的良好品质;学生的广泛参与也充分体现学生的主体地位。同时,也锻炼了学生综合能力、表达能力。
③以图片展示的形式对学生感观上的刺激,可以使学生对知识的认识更加深刻。
3、课堂小结,强化认识。(2—3分钟)
课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解政治理论在实际生活中的应用,并且逐渐地培养学生具有良好的个性。
4、板书设计
5、布置作业
针对当前的素质教育理念,我进行了分层训练,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和"减负"的目的。
五、效果评估
这节课教学效果好,我通过创设情境作为引线,充分调动学生的学习积极性和主动性,鼓励学生主动参与,并通过师生互动,生生互动使学生在体验中感悟人民代表大会及其职权,从而使学生在学习知识的基础上使情感得以升华,提高学生参与政治生活的积极性,也有助于学生树立更强的社会主任翁的意识。
高一数学教案简短模板下载篇8
一、教材分析
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
高一数学教案简短模板下载篇9
说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。
一、说教材
1、教材的地位、作用及编写意图
《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。
2、教学目标的确定及依据。
依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。
(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。
(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。
(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;
难点:利用指数函数的图象和性质得到对数函数的图象和性质;
关键:抓住对数函数是指数函数的反函数这一要领。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用“从特殊到一般”、“从具体到抽象”的方法。
(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
(4)多媒体演示法。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教学程序
1、复习导入
(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
2、认定目标(出示教学目标)
3、导学达标
按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动.
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。
因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。
教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。
方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x>0,因此可取x=•••,,,1,2,4,8•••,请计算对应的y值,然后在坐标系内描点、画出它们的图象.
方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。
设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。
这样可以充分调动学生自主学习的积极性。
(3)对数函数的性质
在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上
述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。
作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。
设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)
设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。
4、巩固达标(见课件)
这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。
5、反馈练习(见课件)
习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。
6、归纳总结(见课件)
引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
7、课外作业:(1)完成P178A组1、2、3题
(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?
五、说板书
板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。
高一数学教案简短模板下载篇10
一、课标要求:
理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.
二、知识与方法回顾:
1、充分条件、必要条件与充要条件的概念:
2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:
3、从集合与集合之间关系上看充分条件、必要条件与充要条件:
4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论
5、化归思想:
表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;
这里要注意原命题逆否命题、逆命题否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.
6、数形结合思想:
利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.
三、基础训练:
1、设命题若p则q为假,而若q则p为真,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2、设集合M,N为是全集U的两个子集,则是的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3、若是实数,则是的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
四、例题讲解
例1已知实系数一元二次方程,下列结论中正确的是()
(1)是这个方程有实根的充分不必要条件
(2)是这个方程有实根的必要不充分条件
(3)是这个方程有实根的.充要条件
(4)是这个方程有实根的充分不必要条件
A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)
例2(1)已知h0,a,bR,设命题甲:,命题乙:且,问甲是乙的()
(2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
变式:a=0是直线与平行的条件;
例3如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s
的充分条件,那么命题p是命题q的条件;命题s是命题q的条件;命题r是命题q的条件.
例4设命题p:4x-31,命题q:x2-(2a+1)x+a(a+1)0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;
例5设是方程的两个实根,试分析是两实根均大于1的什么条件?并给予证明.
五、课堂练习
1、设命题p:,命题q:,则p是q的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2、给出以下四个命题:①若p则q②若﹁r则﹁q③若r则﹁s
④若﹁s则q若它们都是真命题,则﹁p是s的条件;
3、是否存在实数p,使是的充分条件?若存在,求出p的取值范围;若不存在说明理由.
六、课堂小结:
七、教学后记:
高三班学号姓名日期:月日
1、AB是AB=B的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2、是的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3、2x2-5x-30的一个必要不充分条件是()
A.-
4、2且b是a+b4且ab的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么是M=N的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
6、若命题A:,命题B:,则命题A是B的条件;
7、设条件p:x=x,条件q:x2-x,则p是q的条件;
8、方程mx2+2x+1=0至少有一个负根的充要条件是;
9、关于x的方程x2+mx+n=0有两个小于1的正根的一个充要条件是;
10、已知,求证:的充要条件是;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。
12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有两个正根的充要条件;
(2)方程至少有一正根的充要条件.
高一数学教案简短模板下载篇11
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理数},
B={x|x是无理数},
C={x|x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,
导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={x|–1<x<2},集合b={x|1<x<3},求a∪b.< p="">
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.< p="">
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,
③A∪B=B∪A,
④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={x|x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},
B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},
B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},
∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性质:①A∩A=A,A∪A=A,
②A∩=,A∪=A,
③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,
∴a–1=–2或a+1=–2,
解得a=–1或a=–3,
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,
又∵a2+1≥1,∴a2–3=–2,
解得a=±1,
当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},b={x|x<a},< p="">
(1)若A∩B=,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.
【解析】(1)如下图所示:A={x|–1<x<1},b={x|x<a},且a∩b=,< p="">
∴数轴上点x=a在x=–1左侧.
∴a≤–1.
(2)如右图所示:A={x|–1<x<1},b={x|x<a}且a∪b={x|x<1},< p="">
∴数轴上点x=a在x=–1和x=1之间.
∴–1<a≤1.< p="">
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.
当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.
当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.
例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.
当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.
当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.
综上所述,x=–3且A∪B={–8,–4,4,–7,9}.
高一数学教案简短模板下载篇12
教学类型:探究研究型
设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.
教学过程:
一、片头
内容:现在让我们一起来学习《集合的运算——自己探索也能发现的&39;数学规律(第二讲)》。
二、正文讲解
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?
那么,这个规律是偶然的,还是一个恒等式呢?
2.规律的验证:
试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用
3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算
三、结尾
通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。
希望你在今后的学习中,勇于探索,发现更多有趣的规律。
高一数学教案简短模板下载篇13
【学习目标】
1、感受数学探索的成功感,提高学习数学的兴趣;
2、经历诱导公式的探索过程,感悟由未知到已知、复杂到简单的数学转化思想。
3、能借助单位圆的对称性理解记忆诱导公式,能用诱导公式进行简单应用。
【学习重点】三角函数的诱导公式的理解与应用
【学习难点】诱导公式的推导及灵活运用
【知识链接】(1)单位圆中任意角α的正弦、余弦的定义
(2)对称性:已知点P(x,),那么,点P关于x轴、轴、原点对称的点坐标
【学习过程】
一、预习自学
阅读书第19页——20页内容,通过对-α、π-α、π+α、2π-α、α的终边与单位圆的交点的对称性规律的探究,结合单位圆中任意角的正弦、余弦的定义,从中自我发现归纳出三角函数的诱导公式,并写出下列关系:
(1)-407[导学案]4.4单位圆的对称性与诱导公式与407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(2)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(3)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
(4)角407[导学案]4.4单位圆的对称性与诱导公式与角407[导学案]4.4单位圆的对称性与诱导公式的正弦函数、余弦函数关系
二、合作探究
探究1、求下列函数值,思考你用到了哪些三角函数诱导公式?试总结一下求任意角的三角函数值的过程与方法。
(1)407[导学案]4.4单位圆的对称性与诱导公式(2)407[导学案]4.4单位圆的对称性与诱导公式(3)sin(-1650°);
探究2:化简:407[导学案]4.4单位圆的对称性与诱导公式407[导学案]4.4单位圆的对称性与诱导公式(先逐个化简)
探究3、利用单位圆求满足407[导学案]4.4单位圆的对称性与诱导公式的角的集合。
三、学习小结
(1)你能说说化任意角的正(余)弦函数为锐角正(余)弦函数的一般思路吗?
(2)本节学习涉及到什么数学思想方法?
(3)我的疑惑有
【达标检测】
1、在单位圆中,角α的终边与单位圆交于点P(-407[导学案]4.4单位圆的对称性与诱导公式,407[导学案]4.4单位圆的对称性与诱导公式),
则sin(-α)=;cs(α±π)=;cs(π-α)=
2.求下列函数值:
(1)sin(407[导学案]4.4单位圆的对称性与诱导公式)=;(2)cs210&rd;=
3、若csα=-1/2,则α的集合S=
高一数学教案简短模板下载篇14
教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一数学教案简短模板下载篇15
一、教材分析
1、教材的地位和作用
一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据
九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据
“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理
在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段
采用投影仪
五、教学程序
1、新课导入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)
(2)列方程解应用题的方法,步骤?(并引例打基础)
课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)
设出求知数,列出代数式,并根据等量关系列出方程