高一数学教案万能
教案可以帮助教师合理规划教学时间,安排教学环节和教学资源,使教学过程有序、连贯。怎样写高一数学教案万能?这里提供高一数学教案万能分享,供大家参考。
高一数学教案万能篇1
1.教材(教学内容)
本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用.
2.设计理念
本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标.
3.教学目标
知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题.
过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用.
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.
4.重点难点
重点:任意角三角函数的定义.
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透.
5.学情分析
学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.
6.教法分析
“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构.这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用.
7.学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标.
8.教学设计(过程)
一、引入
问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?
问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?
问题3:当角clip_image002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?
二、原有认知结构的改造和重构
问题4:当角clip_image002[1]是锐角时,clip_image004,线段OP的长度clip_image006这几个量之间有何关系?
学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数
学生阅读教材,并思考:
问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?
学生讨论并回答
三、新概念的形成
问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?
学生回答,并阅读教材,得到任意角三角函数的定义.并思考:
问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?
展示任意角三角函数的定义,并指出它是如何刻划圆周运动的
并类比函数的研究方法,得出任意角三角函数的定义域和值域。
四、概念的运用
1.基础练习
①口算clip_image008的值.
②分别求clip_image010的值
小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值
ⅱ)诱导公式(一)
③若clip_image012,试写出角clip_image002[2]的值。
④若clip_image015,不求值,试判断clip_image017的符号
⑤若clip_image019,则clip_image021为第象限的角.
例1.已知角clip_image002[3]的终边过点clip_image024,求clip_image026之值
若P点的坐标变为clip_image028,求clip_image030的值
小结:任意角三角函数的等价定义(终边定义法)
例2.一物体A从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用clip_image034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image006[1],如何用clip_image034[2]来表示物体A所在位置的坐标?
小结:可以采用三角函数模型来刻画圆周运动
五、拓展探究
问题8:当角clip_image002[4]的终边绕顶点O作圆周运动时,角clip_image002[5]的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image002[6]之间还可以建立其它函数模型吗?
思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_image002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image002[8]余弦值、正切值呢?
六、课堂小结
问题9:请你谈谈本节课的收获有哪些?
七、课后作业
教材P21第6、7、8题
高一数学教案万能篇2
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
高一数学教案万能篇3
教学目标
1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。
2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。
3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。
教学重点难点
教学重点:圆的标准方程理解及运用
教学难点:根据不同条件,利用待定系数求圆的标准方程。
根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――操作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、操作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生独立操作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。
学习者分析
高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。
高一数学教案万能篇4
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情
学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标
(一)知识与技能目标
能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标
经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标
激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点
(一)重点
用解析法研究直线与圆的位置关系。
(二)难点
体会用解析法解决问题的数学思想。
五、教学方法
根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
六、教学过程
(一)导入新课
教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?
教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。
设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。
(二)新课教学——探究新知
教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。
判断方法:
(1)定义法:看直线与圆公共点个数
即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。
(2)比较法:圆心到直线的距离d与圆的半径r做比较,
(三)合作探究——深化新知
教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。
已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?
让学生自主探索,讨论交流,并阐述自己的解题思路。
当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。
(四)归纳总结——巩固新知
为了将结论由特殊推广到一般引导学生思考:
可由方程组的解的不同情况来判断:
当方程组有两组实数解时,直线l与圆C相交;
当方程组有一组实数解时,直线l与圆C相切;
当方程组没有实数解时,直线l与圆C相离。
活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。
(五)小结作业
在小结环节,我会以口头提问的方式:
(1)这节课学习的主要内容是什么?
(2)在数学问题的解决过程中运用了哪些数学思想?
设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。
作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。
七、板书设计
我的板书本着简介、直观、清晰的原则,这就是我的板书设计。
高一数学教案万能篇5
目标:
1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数;
2.让学生了解函数的零点与方程根的联系;
3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用;
4。培养学生动手操作的能力。
二、教学重点、难点
重点:零点的概念及存在性的判定;
难点:零点的确定。
三、复习引入
例1:判断方程x2-x-6=0解的存在。
分析:考察函数f(x)=x2-x-6,其
图像为抛物线容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函数f(x)的图像是连续曲线,因此,
点B(0,-6)与点C(4,6)之间的那部分曲线
必然穿过x轴,即在区间(0,4)内至少有点
X1使f(X1)=0;同样,在区间(-4,0)内也至
少有点X2,使得f(X2)=0,而方程至多有两
个解,所以在(-4,0),(0,4)内各有一解
定义:对于函数y=f(x),我们把使f(x)=0的实数x叫函数y=f(x)的零点
抽象概括
y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在(a,b)内至少有一个实数解。
f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点
所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点
注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;
2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;
3、我们所研究的大部分函数,其图像都是连续的曲线;
4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)
5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/x,有f(-1)xf(1)0但没有零点。
四、知识应用
例2:已知f(x)=3x-x2,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?
解:f(x)=3x-x2的图像是连续曲线,因为
f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,
所以f(-1)f(0)0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解
练习:求函数f(x)=lnx+2x-6有没有零点?
例3判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。
解:考虑函数f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在(-,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。
练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。
五、课后作业
p133第2,3题
高一数学教案万能篇6
教学目标
1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。