教案吧 > 高中教案 > 高一教案 >

高一数学拓展教案

时间: 新华 高一教案

教案可以帮助教师预测教学中可能出现的问题,并制定相应的解决方案,从而更好地应对突发情况。写高一数学拓展教案要注意什么?这里给大家提供高一数学拓展教案下载,供大家参考。

高一数学拓展教案篇1

一、说教材

(一)说教材的地位和作用

在此之前,学生们已经学习了公民的政治生活和为人民服务的政府两个单元,本单元在内容上是前两个单元的延伸和深化,也是政治生活的核心内容。本框题的学习是为后一框题作铺垫,是以后政治学习中不可缺少的部分,也是往年高考的必考内容。

(二)说教学目标

1、知识目标:知道人民代表大会是我国的国家权力机关;了解人民代表大会的主要职权;了解人民代表的法律地位、权力和义务。

2、能力目标:提高运用马克思主义立场、观点、方法分析政治生活的能力;增强收集材料的能力,能够从报刊、书籍等渠道查阅、收集人民代表大会有关资料用于学习。

依据:美国心理学家加涅"为学习设计教学"的主张(学习放在一定的情境中进行);美国布鲁纳"发现法"(重视学生的学习信心和主动精神)。

3、情感、态度与价值观目标:培养学生的政治素养、合作学习的团队精神。

依据:学习的迁移性原则;皮亚杰发展心理学理论,主张内外因相互作用的发展观。

(三)说教学的重、难点

教学重点、难点:人民代表大会及人民代表大会的职权。

依据:本节内容不仅是高考的重点,也是考试易错点。

(四)说教学模式:"设疑—探究—归纳—提高"。

依据:皮亚杰建构主义教学理论,认为学生是在同周围环境的相互作用的过程中,建起关于外部世界的知识,从而使自身认识结构得到发展;美国布鲁纳动机性原则,教师要充分注重学生的内在动机,这是教学成败异常重要的因素。

二、说教法

政治是一门培养人的实践能力的重要学科。因此,在教学过程中,不仅要使学生"知其然",还要使学生"知其所以然"。我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。

考虑到我校高一年级学生的现状,我主要采取学生活动的教学方法,让学生真正的参与活动,而且在活动中得到认识和体验,产生践行的愿望。培养学生将课堂教学和自己的行动结合起来,发展思辩能力,注重学生的心理状况。同时,由于教师自身也是非常重要的教学资源。教师本人应该通过课堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决实际问题的渴望,并且要培养学生以理论联系实际的能力,从而达到的教学效果。同时也体现了课改的精神。基于本框题的特点,我主要采用了以下的教学方法:

1、演示法:利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。

2、探究法:引导学生通过创设情景等活动形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自学能力、思维能力、活动组织能力。

3、讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。

三、说学法

我们常说:"现代的文盲不是不会字的人,而是没有掌握学习方法的人",因而,我在教学过程中特别重视学法的指导。让学生从机械的"学、答"向"学、问"转变,从"学会"向"会学"转变,成为真正的学习的主人。这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:思考评价法、分析归纳法、自主探究法、总结反思法。

四、说教学过程(说下教学流程,如:由人大图片导入新课——学生探究和分组讨论:如,人民是怎样行使国家权力?我国的国家机关是怎样构成的?——教师点评—小结)

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。安排如下:

(一)创设情景,激趣引入

(二)围绕中心,突出重点

(三)层层深入,突破难点

(四)归纳小结,交流感悟

(五)课后拓展,注重实践

1、导入新课:(2分钟)

课件展示出:20__年3月的相关图片。 教案 导语设计的依据:以图片和视频提高学生的兴趣,使学生明确本节课要讲述的内容,以激发起学生的求知欲望。这是政治教学非常重要的一个环节。

2、讲授新课:(讲授15分钟,学生合作探究15分钟)

(1)人民怎样当家作主(如人民—代表—各级人大—组成国家权力机关—产生行政,审判机关或决定国家重大事务)从这个示意图可看出,我国人民行使国家权力的机关是什么?(提问下)

通过学生对学过知识的复习,让学生同桌讨论,总结人民当家作主的过程。

以这样的方式既可以考察学生对学过知识的掌握,又可以引导学生进入新课。通过同桌之间讨论,提高学生参与课堂能力及总结能力。

(2)肩负着人民重托(结合他的产生,他的地位,有那些权利,对人大代表是一种责任的理解,什么样的人可当选人大代表?)也可模议:假如我是人大代表?

以人大代表代表人民帮助人民解决问题的材料,指导学生总结人大代表和人民的关系及权力和职责。

以给出材料的方式,启发学生独立思维的能力,并能联系实际,灵活运用,提高学生的分析能力。

(3)人民行使国家权力的机关(可结合今年人大会议议程分析出全国人大的职权?全国人大与其常委会的关系?)通过学生自我阅读教材后,小组合作,共同探究人民代表大会的性质、地位、职权及常设机关,重点讨论其职权。讨论过程中教师引导学生并,展示所收集的与人民代表大会的职权相关的图片,和学生一起享受讨论成果。

①通过阅读,培养学生良好的自主学习习惯;同时以问题教法开始,由易到难设计题目,符合学生认知特点和认知规律。

②经过讨论交流,培养学生与他人合作学习和沟通的良好品质;学生的广泛参与也充分体现学生的主体地位。同时,也锻炼了学生综合能力、表达能力。

③以图片展示的形式对学生感观上的刺激,可以使学生对知识的认识更加深刻。

3、课堂小结,强化认识。(2—3分钟)

课堂小结,可以把课堂传授的知识尽快地转化为学生的素质;简单扼要的课堂小结,可使学生更深刻地理解政治理论在实际生活中的应用,并且逐渐地培养学生具有良好的个性。

4、板书设计

5、布置作业

针对当前的素质教育理念,我进行了分层训练,这样做既可以使学生掌握基础知识,又可以使学有余力的学生有所提高,从而达到拔尖和"减负"的目的。

五、效果评估

这节课教学效果好,我通过创设情境作为引线,充分调动学生的学习积极性和主动性,鼓励学生主动参与,并通过师生互动,生生互动使学生在体验中感悟人民代表大会及其职权,从而使学生在学习知识的基础上使情感得以升华,提高学生参与政治生活的积极性,也有助于学生树立更强的社会主任翁的意识。

高一数学拓展教案篇2

教学目标:

1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.

2.培养学生数形结合的思想,以及分析推理的能力.

教学重点:

对数函数性质的应用.

教学难点:

对数函数的性质向对数型函数的演变延伸.

教学过程:

一、问题情境

1.复习对数函数的性质.

2.回答下列问题.

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3.情境问题.

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题.

三、数学运用

例1求函数y=log2(x2+2x+2)的&39;定义域和值域.

练习:

(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.

(2)函数,x(0,8]的值域是.

(3)函数y=log(x2-6x+17)的值域.

(4)函数的值域是_______________.

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(-x)

例3已知loga0.75>1,试求实数a取值范围.

例4已知函数y=loga(1-ax)(a>0,a≠1).

(1)求函数的定义域与值域;

(2)求函数的单调区间.

练习:

1.下列函数(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).

2.函数y=lg(-1)的图象关于对称.

3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=.

4.求函数,其中x[,9]的值域.

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).

五、作业

课本P70~71-4,5,10,11.

高一数学拓展教案篇3

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教B具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

高一数学拓展教案篇4

一、教学目标

1、知识与技能:

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的图片,

思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影图片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影图片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影图片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(四)巩固深化

练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题

(五)归纳整理:由学生整理学习了哪些内容

高一数学拓展教案篇5

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一数学拓展教案篇6

一、三维目标:

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

二、学习重、难点:

重点:函数的奇偶性的概念。

难点:函数奇偶性的判断。

三、学法指导:

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

四、知识链接:

1.复习在初中学习的轴对称图形和中心对称图形的定义:

2.分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

高一数学拓展教案篇7

教学目标:

(1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:

(1)重点:了解集合的含义与表示、集合中元素的特性。

(2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:

【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?

[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?

[设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集

[设计意图]引出并介绍列举法。

【问题6】例1的讲解。同学们能用列举法表示不等式x-7<3的解集吗?

【问题7】例2的讲解。请同学们思考课本第6页的思考题。

[设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。

【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?

[设计意图]学习小结。对本节课所学知识进行回顾。

布置作业。

高一数学拓展教案篇8

学习重点:了解弧度制,并能进行弧度与角度的换算

学习难点:弧度的概念及其与角度的关系。

学习目标

①了解弧度制,能进行弧度与角度的换算。

②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。

教学过程

一、自主学习

1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。

2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。

3、角的弧度数的绝对值。(为弧长,为半径)

4:完成特殊角的度数与弧度数的对应表。

角度030456090120

弧度

角度135150180210225240

弧度

角度270300315330360

弧度

5、扇形面积公式:。

二、师生互动

例1把化成弧度。

变式:把化成度。

小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。

例2用弧度制表示:

(1)终边在轴上的角的集合;

(2)终边在轴上的角的集合。

变式:终边在坐标轴上的角的集合。

例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。

三、巩固练习

1、若=—3,则角的终边在()。

A、第一象限B、第二象限

C、第三象限D、第四象限

2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。

四、课后反思

五、课后巩固练习

1、用弧度制表示终边在下列位置的角的集合:

(1)直线y=x;(2)第二象限。

2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。

高一数学拓展教案篇9

1.教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用.

2.设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而引导学生带着问题阅读和钻研教材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,最后通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标.

3.教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题.

过程与方法目标:体会数学建模思想、类比思想和化归思想在数学新概念形成中的重要作用.

情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美.

4.重点难点

重点:任意角三角函数的定义.

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透.

5.学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念.在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构.

6.教法分析

“问题解决”教学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构.这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用.

7.学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标.

8.教学设计(过程)

一、引入

问题1:我们已经学过了任意角和弧度制,你对“角”这一概念印象最深的是什么?

问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?

问题3:当角clip_image002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?

二、原有认知结构的改造和重构

问题4:当角clip_image002[1]是锐角时,clip_image004,线段OP的长度clip_image006这几个量之间有何关系?

学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数

学生阅读教材,并思考:

问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?

学生讨论并回答

三、新概念的形成

问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?

学生回答,并阅读教材,得到任意角三角函数的定义.并思考:

问题7:任意角三角函数的定义符合我们高中所学的函数定义吗?

展示任意角三角函数的定义,并指出它是如何刻划圆周运动的

并类比函数的研究方法,得出任意角三角函数的定义域和值域。

四、概念的运用

1.基础练习

①口算clip_image008的值.

②分别求clip_image010的值

小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

ⅱ)诱导公式(一)

③若clip_image012,试写出角clip_image002[2]的值。

④若clip_image015,不求值,试判断clip_image017的符号

⑤若clip_image019,则clip_image021为第象限的角.

例1.已知角clip_image002[3]的终边过点clip_image024,求clip_image026之值

若P点的坐标变为clip_image028,求clip_image030的值

小结:任意角三角函数的等价定义(终边定义法)

例2.一物体A从点clip_image032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clip_image034,试用clip_image034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clip_image006[1],如何用clip_image034[2]来表示物体A所在位置的坐标?

小结:可以采用三角函数模型来刻画圆周运动

五、拓展探究

问题8:当角clip_image002[4]的终边绕顶点O作圆周运动时,角clip_image002[5]的终边与单位圆的交点clip_image039的坐标clip_image041clip_image043与角clip_image002[6]之间还可以建立其它函数模型吗?

思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clip_image002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clip_image002[8]余弦值、正切值呢?

六、课堂小结

问题9:请你谈谈本节课的收获有哪些?

七、课后作业

教材P21第6、7、8题

高一数学拓展教案篇10

一元二次不等式的解法

教学目标

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以转化为一元一次不等式组;

(3)了解简单的分式不等式的解法;

(4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系;

(5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式;

(6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;

(7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观.

教学重点:一元二次不等式的解法;

教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系.

教与学过程设计

第一课时

Ⅰ.设置情境

问题:

①解方程

②作函数 的图像

③解不等式

【置疑】在解决上述三问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗?

【回答】函数图像与x轴的交点横坐标为方程的根,不等式 的解集为函数图像落在x轴上方部分对应的横坐标。能。

通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

在这里我们发现一元一次方程,一次不等式与一次函数三者之间有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将现在要求解的一元二次不等式与二次函数联系起来讨论找到其求解方法呢?

Ⅱ.探索与研究

我们现在就结合不等式 的求解来试一试。(师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出 的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。)

【答】方程 的解集为

不等式 的解集为

【置疑】哪位同学还能写出 的解法?(请一程度差的同学回答)

【答】不等式 的解集为

我们通过二次函数 的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题 的解集,还求出了 的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。

下面我们再对一般的一元二次不等式 与 来进行讨论。为简便起见,暂只考虑 的情形。请同学们思考下列问题:

如果相应的一元二次方程 分别有两实根、惟一实根,无实根的话,其对应的二次函数 的图像与x轴的位置关系如何?(提问程度较好的学生)

【答】二次函数 的图像开口向上且分别与x轴交于两点,一点及无交点。

现在请同学们观察表中的二次函数图,并写出相应一元二次不等式的解集。(通过多媒体或其他载体给出以下表格)

【答】 的解集依次是

的解集依次是

它是我们今后求解一元二次不等式的主要工具。应尽快将表中的结果记住。其关键就是抓住相应二次函数 的图像。

课本第19页上的例1.例2.例3.它们均是求解二次项系数 的一元二次不等式,却都没有给出相应二次函数的图像。其解答过程虽很简练,却不太直观。现在我们在课本预留的位置上分别给它们补上相应二次函数图像。

(教师巡视,重点关注程度稍差的同学。)

Ⅲ.演练反馈

1.解下列不等式:

(1) (2)

(3) (4)

2.若代数式 的值恒取非负实数,则实数x的取值范围是 。

3.解不等式

(1) (2)

参考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)当 或 时, ,当 时,

当 或 时, 。

Ⅳ.总结提炼

这节课我们学习了二次项系数 的一元二次不等式的解法,其关键是抓住相应二次函数的图像与x轴的交点,再对照课本第39页上表格中的结论给出所求一元二次不等式的解集。

(五)、课时作业

(P20.练习等3、4两题)

(六)、板书设计

第二课时

Ⅰ.设置情境

(通过讲评上一节课课后作业中出现的问题,复习利用“三个二次”间的关系求解一元二次不等式的主要操作过程。)

上节课我们只讨论了二次项系数 的一元二次不等式的求解问题。肯定有同学会问,那么二次项系数 的一元二次不等式如何来求解?咱们班上有谁能解答这个疑问呢?

Ⅱ.探索研究

(学生议论纷纷.有的说仍然利用二次函数的图像,有的说将二次项的系数变为正数后再求解,…….教师分别请持上述见解的学生代表进一步说明各自的见解.)

生甲:只要将课本第39页上表中的二次函数图像次依关于x轴翻转变成开口向下的抛物线,再根据可得的图像便可求得二次项系数 的一元二次不等式的解集.

生乙:我觉得先在不等式两边同乘以-1将二次项系数变为正数后直接运用上节课所学的方法求解就可以了.

师:首先,这两种见解都是合乎逻辑和可行的.不过按前一见解来操作的话,同学们则需再记住一张类似于第39页上的表格中的各结论.这不但加重了记忆负担,而且两表中的结论容易搞混导致错误.而按后一种见解来操作时则不存在这个问题,请同学们阅读第19页例4.

(待学生阅读完毕,教师再简要讲解一遍.)

[知识运用与解题研究]

由此例可知,对于二次项系数的一元二次不等式是将其通过同解变形化为 的一元二次不等式来求解的,因此只要掌握了上一节课所学过的方法。我们就能求

解任意一个一元二次不等式了,请同学们求解以下两不等式.(调两位程度中等的学生演板)

(1) (2)

(分别为课本P21习题1.5中1大题(2)、(4)两小题.教师讲评两位同学的解答,注意纠正表述方面存在的问题.)

训练二 可化为一元一次不等式组来求解的不等式.

目前我们熟悉了利用“三个二次”间的关系求解一元二次不等式的方法虽然对任意一元二次不等式都适用,但具体操作起来还是让我们感到有点麻烦.故在求解形如 (或 )的一元二次不等式时则根据(有理数)乘(除)运算的“符号法则”化为同学们更加熟悉的一元一次不等式组来求解.现在清同学们阅读课本P20上关于不等式 求解的内容并思考:原不等式的解集为什么是两个一次不等式组解集的并集?(待学生阅读完毕,请一程度较好,表达能力较强的学生回答该问题.)

【答】因为满足不等式组 或 的x都能使原不等式 成立,且反过来也是对的,故原不等式的解集是两个一元二次不等式组解集的并集.

这个回答说明了原不等式的解集A与两个一次不等式组解集的并集B是互为子集的关系,故它们必相等,现在请同学们求解以下各不等式.(调三位程度各异的学生演板.教师巡视,重点关注程度较差的学生).

(1) [P20练习中第1大题]

(2) [P20练习中第1大题]

(3) [P20练习中第2大题]

(老师扼要讲评三位同学的解答.尤其要注意纠正表述方面存在的问题.然后讲解P21例5).

例5 解不等式

因为(有理数)积与商运算的“符号法则”是一致的,故求解此类不等式时,也可像求解 (或 )之类的不等式一样,将其化为一元一次不等式组来求解。具体解答过程如下。

解:(略)

现在请同学们完成课本P21练习中第3、4两大题。

(等学生完成后教师给出答案,如有学生对不上答案,由其本人追查原因,自行纠正。)

[训练三]用“符号法则”解不等式的复式训练。

(通过多媒体或其他载体给出下列各题)

1.不等式 与 的解集相同此说法对吗?为什么[补充]

2.解下列不等式:

(1) [课本P22第8大题(2)小题]

(2)   [补充]

(3) [课本P43第4大题(1)小题]

(4) [课本P43第5大题(1)小题]

(5) [补充]

(每题均先由学生说出解题思路,教师扼要板书求解过程)

参考答案:

1.不对。同 时前者无意义而后者却能成立,所以它们的解集是不同的。

2.(1)

(2)原不等式可化为: ,即

解集为 。

(3)原不等式可化为

解集为

(4)原不等式可化为 或

解集为

(5)原不等式可化为: 或 解集为

Ⅲ.总结提炼

这节课我们重点讲解了利用(有理数)乘除法的符号法则求解左式为若干一次因式的积或商而右式为0的不等式。值得注意的是,这一方法对符合上述形状的高次不等式也是有效的,同学们应掌握好这一方法。

(五)布置作业

(P22.2(2)、(4);4;5;6。)

(六)板书设计

高一数学拓展教案篇11

本学期,我担任高一(25)、(26)、(27)、(28)四个班的化学教育教学工作。

一、指导思想

认真学习教育部《基础教育课程改革纲要》和《普通高中研究性学习实施建议》,认真学习《普通高中化学课程标准》,明确当前基础教育课程改革的方向,深刻理解课程改革的理念,全面推进课程改革的进行。

在教学中,贯彻基础教育课程改革的改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程;改变课程内容&39;难、繁、偏、旧&39;和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能;改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力的课程观。

二、教学要求

1、认真研究当前教育改革发展趋势,转变传统教学观念,注重学生能力培养,以培养学生创新意识和综合能力为重点,重视科学态度和科学方法的教育,寓思想教育与课堂教学之中,促进学生健康发展,深化教育改革。

2、加强教学研究,提高教学质量。提倡以科研带教学,以教学促科研,使教学工作课题化。教师要努力提高教科研的意识和能力,积极探讨科学合理、适应性强的实验方案,改革课堂教学方法,积极进行研究性学习的探索,不断提高教学水平和专业知识水平,开拓新的课堂教学模式。在备课活动中,要把课堂教学改革,德育教育放在首位。

在教学目标、方法、内容的确定、作业的布置与批改、单元的测试与评估、课内外辅导活动中要从有利于培养学生高尚道德情操,创新精神和实践能力去思考设计。

3、做好调查研究,真正了解高一文、理科学生的实际情况。要认真研究学法,加强对学生学习方法的指导,加强分类指导,正确处理对不同类学校和不同类学生的教学要求,注重提高学生学习化学的兴趣。在教学中,努力发挥学生的主体作用和教师的指导作用,提高教学效率。提倡向40分钟要质量,反对加班加点磨学生的低劣教学方法。

4、注重知识的落实,加强双基教学,加强平时的复习巩固,加强平时考查,通过随堂复习、单元复习和阶段复习及不同层次的练习等使学生所学知识得以及时巩固和逐步系统化,在能力上得到提高。

5、加强实验研究,重视实验教学,注重教师实验基本功培训,倡导改革实验教学模式,增加学生动手机会,培养学生实践能力。

6、要发挥群体优势,发挥教研备课组的作用,依靠集体力量,在共同研究的基础上设计出丰富多彩的教学活动。

高一数学拓展教案篇12

一、学习目标与自我评估

1 掌握利用单位圆的几何方法作函数 的图象

2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3 会用代数方法求 等函数的周期

4 理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”, 周期的求解。

三、学法指导

1、 是周期函数是指对定义域中所有 都有____,即 应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度 与时间 之间的函数关系如图所示

(1)求该函数的周期;

(2)求 时钟摆的高度。

例2、求下列函数的周期。

(1) (2)

总结:(1)函数 (其中 均为常数,且___的周期T= 。

(2)函数 (其中 均为常数,且__的周期T= 。

例3、求证:____的周期为 __。

例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,

总结:函数 (其中 均为常数,且___的周期T= 。

例5、(1)求 的周期。

(2)已知 满足 ,求证: 是周期函数

课后思考:能否利用单位圆作函数 的图象。

六、作业:

七、自主体验与运用

1、函数 的周期为 ( )

A、 B、 C、 D、

2、函数 的最小正周期是 ( )

A、 B、 C、 D、

3、函数 的最小正周期是 ( )

A、 B、 C、 D、

4、函数 的周期是 ( )

A、 B、 C、 D、

5、设 是定义域为R,最小正周期为 的函数,

若 ,则 的值等于 (  )

A、1 B、 C、0 D、

6、函数 的最小正周期是 ,则

7、已知函数 的最小正周期不大于2,则正整数的最小值是

8、求函数 的最小正周期为T,且 ,则正整数的值是

9、已知函数 是周期为6的奇函数,且 则

10、若函数 ,则

11、用周期的定义分析 的周期。

12、已知函数 ,如果使 的周期在 内,求正整数 的值

13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

函数关系如图所示:

(1) 求该函数的周期;

(2) 求 时,该质点离开平衡位置的位移。

14、已知 是定义在R上的函数,且对任意 有

成立,

(1) 证明: 是周期函数;

(2) 若 求 的值。

两角差的余弦公式

【使用说明】

1、复习教材P124-P127页,40分钟时间完成预习学案

2、有余力的学生可在完成探究案中的部分内容。

【学习目标】

知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

【重点】通过探索得到两角差的余弦公式以及公式的灵活运用

【难点】两角差余弦公式的推导过程

预习自学案

一、知识链接

1. 写出 的三角函数线 :

2. 向量 , 的数量积,

①定义:

②坐标运算法则:

3. , ,那么 是否等于 呢?

下面我们就探讨两角差的余弦公式

二、教材导读

1.、两角差的余弦公式的推导思路

如图,建立单位圆O

(1)利用单位圆上的三角函数线

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

从而得到两角差的余弦公式:

____________________________________

(2)利用两点间距离公式

如图,角 的终边与单位圆交于A( )

角 的终边与单位圆交于B( )

角 的终边与单位圆交于P( )

点T( )

AB与PT关系如何?

从而得到两角差的余弦公式:

____________________________________

(3) 利用平面向量的知识

用 表示向量 ,

=( , ) =( , )

则 . =

设 与 的夹角为

①当 时:

=

从而得出

②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =

此时 =

从而得出

2、两角差的余弦公式

____________________________

三、预习检测

1. 利用余弦公式计算 的值.

2. 怎样求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值.

例2.已知 , 是第三象限角,求 的值.

训练案

一、 基础训练题

1、

2、 ¬¬¬¬¬¬¬¬¬¬¬

3、

二、综合题

--------------------------------------------------

高一数学拓展教案篇13

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学拓展教案篇14

第一节集合的含义与表示

学时:1学时

[学习引导]

一、自主学习

1.阅读课本.

2.回答问题:

⑴本节内容有哪些概念和知识点?

⑵尝试说出相关概念的含义?

3完成练习

4小结

二、方法指导

1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系

3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法

[思考引导]

一、提问题

1.集合中的元素有什么特点?

2、集合的常用表示法有哪些?

3、集合如何分类?

4.元素与集合具有什么关系?如何用数学语言表述?

5集合和是否相同?

二、变题目

1.下列各组对象不能构成集合的是()

A.北京大学2008级新生

B.26个英文字母

C.著名的艺术家

D.2008年北京奥运会中所设定的比赛项目

2.下列语句:①0与表示同一个集合;

②由1,2,3组成的集合可表示为或;

③方程的解集可表示为;

④集合可以用列举法表示。

其中正确的是()

A.①和④B.②和③

C.②D.以上语句都不对

[总结引导]

1.集合中元素的三特性:

2.集合、元素、及其相互关系的数学符号语言的表示和理解:

3.空集的含义:

[拓展引导]

1.课外作业:习题11第题;

2.若集合,求实数的值;

3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.

撰稿:程晓杰审稿:宋庆

高一数学拓展教案篇15

一、教材分析

1、教材的地位和作用

一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。

2、教学目标及确立目标的依据

九年义务教育大纲对这部分的要求是:“使学生了解一元二次方程的概念”,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。

知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。

德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。

3、重点,难点及确定重难点的依据

“一元二次方程”有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。

二、教材处理

在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。

三、教学方法和学法

教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。

四、教学手段

采用投影仪

五、教学程序

1、新课导入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)

(2)列方程解应用题的方法,步骤?(并引例打基础)

课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)

设出求知数,列出代数式,并根据等量关系列出方程

21179