教案吧 > 高中教案 > 高一教案 >

高一数学教案

时间: 新华 高一教案

好的教案可以突出学生的主体地位,培养学生的思维能力和创造力,提高学生的综合素质。怎么写出优秀的高一数学教案?这里给大家分享高一数学教案,方便大家学习。

高一数学教案篇1

为了更好地完成教学任务,取得更好的教学效果,现将本学期小学数学第十二册的教学计划拟订如下。

(一)、本册教材内容及编写特点。

修订后的六年制第十二册教材包括以下内容:比例,圆柱、圆锥和球,简单的统计,整理和复习。

与原九年义务教育教科书相比,主要做了以下几方面的调整。

1、将“百分数(二)”移至第十一册。在原九年义务教育教材中,由于受到课时的限制,将“百分数”的内容分成两部分,分别安排在第十一、十二册,此次修订后,由于内容的调整,课时也相应变动,故将本册中的“百分数(二)”移至第十一册,无论从课时还是从内容的衔接来看,都是非常合适的。

2、“整理和复习”部分的调整。本单元主要的变化是根据前面各册教材的内容调整,对有关的习题进行相应的变动,如将“成数、折扣”的有关内容和习题删去,将涉及到带分数加减法、分数和小数混合运算的有关习题进行改编,等等。

3、增加“数学实践活动”。

(1)美丽的校园这个活动是让学生综合运用前面所学的测量、平面图形、比例尺等知识,绘制校园的平面图。通过让学生经历动手测量、收集数据、确定位置、确定比例尺、绘制校园平面图的全过程,发展学生综合应用数学知识的能力,为将来进行简单的课题研究和数学建模打下基础。同时,通过小组合作的活动形式,使学生形成良好的合作意识和合作能力。

(2)节约用水这是一个综合性很强的实践活动,要求学生通过调查、方案设计、收集数据、计算等手段,从量化的角度来说明节约用水的重要性。

整个活动包括以下两部分:一是自行设计方案,用实验的方法求出一个滴水的龙头一天会浪费多少水;二是通过调查、计算,了解一个滴水的龙头一年浪费的水可以供一个家庭用多久,一个学校一年要浪费多少水费,等等。通过以上活动,使学生经历综合运用数学知识、技能和思想方法解决实际问题的过程,逐步提高实践能力。此外,借助这类跨学科的题材,可以增强学生保护环境和参与社会生活的意识。

此外,在以上四册教材的修订过程中,有一些措施是共同的,例如,对有些陈旧的题材进行改造,使之更符合社会的发展和学生的生活实际;对某些过时的数据进行更新;重新绘制每一册的插图,使之更加活泼,更能吸引学生;等等。

(二)本册教材的教学要求:

1、理解比例的意义,认识比例各部分的名称。

2、能运用比例的意义判断两个比能否成比例,并会组比例。理解并掌握比例的基本性质。

3、认识线段比例尺;并掌握用线段比例尺求实际距离的方法,能进行线段比例尺与数值比例尺的互相改写。

4、使学生理解成正比例的意义,能正确判断两种量是否成正比例。

5、使学生认识圆柱,了解圆柱体各部分名称,掌握图柱体的特征。

6、理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确地运用公式计算出圆柱的侧面积和表面积。

7、使学生知道圆柱体体积公式的推导过程,理解并掌握求圆柱体体积的计算公式,并能正确地应用公式计算圆柱体积。

8、使学生认识圆锥,掌握它的特征,学会测量圆锥的高。

9、使学生初步认识球,知道球的特征,进一步发展学生的空间观念。

10、使学生学会制作含有百分数的复式统计表的方法。进一步掌握制表步骤。

高一数学教案篇2

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合记作N,

(2)正整数集:非负整数集内排除0的集记作N_或N+

(3)整数集:全体整数的集合记作Z,

(4)有理数集:全体有理数的集合记作Q,

(5)实数集:全体实数的集合记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集记作N_或N+Q、Z、R等其它

数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,

或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数(不确定)

(2)好心的人(不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|,所组成的集合,最多含(A)

(A)2个元素(B)3个元素(C)4个元素(D)5个元素

5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:

(1)当x∈N时,x∈G;

(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G

证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

则x=x+0_=a+b∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整数,

∴=不一定属于集合G

四、小结:本节课学习了以下内容:

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

五、课后作业:

六、板书设计(略)

七、课后记:

高一数学教案篇3

高中数学第一册(上)1.1集合(一)教学案例教学目标:1、理解集合、集合的元素的概念;2、了解集合的元素的三个特性;3、记忆常用数集的表示;4、会判断元素与集合的关系,

集合(一)教学案例。教学重点:1、集合的概念;2、集合的元素的三个特征性质教学难点:1、集合的元素的三个特性;2、数集与数集的关系课前准备:1、教具准备:多媒体制作数学家康托介绍,包括头像、生平、对数学发展所作的贡献;本节课所需的例题、图形等。2、布置学生预习1.1集合.教学设计:一、[创设情境]多媒体展示激发兴趣:为科学而疯的人——康托托康(Contor,Georg)(1845-1918),俄罗斯—德国数学家、19世纪数学伟大成就之一—集合论的创立人。康托生於俄國聖彼得堡,父母親是丹__人,父親出生於丹__首都哥本哈根,是一個富裕的商人,他的母親瑪麗具有藝術家血統,他父母親年輕時移居到俄國聖彼得堡,康托就出生在那裡,康托是家中長子,並於1856年全家移居到德國法蘭克福,也因為康托多次改變國籍,許多國家都認為康托的成就都是它們培養出來的。康托自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。1874年康托的有关无穷的概念,震撼了知识界。康托凭借古代与中世纪哲学著作中关于无限的思想而导出了关于数的本质新的思想模式,建立了处理数学中的无限的基本技巧,从而极大地推动了分析与逻辑的发展。他研究数论和用三角函数地表示函数等问题,发现了惊人的结果:证明有理数是可列的,而全体实数是不可列的。由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的康托向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托的集合论是一种“疾病”,康托的概念是“雾中之雾”,甚至说康托是“疯子”.来自数学__们的巨大精神压力终于摧垮了康托,使他心力交瘁,患了精神__症,被送进精神病医院.他在集合论方面许多非常出色的成果,都是在精神病发作的间歇时期获得的.真金不怕火炼,康托的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托的工作“可能是这个代所能夸耀的最巨大的工作。”可是这时康托仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托在一家精神病院去世。今天,我们将学习高中数学第一章集合与简易逻辑的1.1集合(一),让我们回顾一下初中涉及到集合的有关知识。二、[复习旧知识]复习提问:1.在初中,我们学过哪些集合?实数集、二元一次方程的解集、不等式(组)的解集、点的集合等。2.在初中,我们用集合描述过什么?角平分线、线段的垂直平分线、圆、圆的内部、圆的外部等。

实数有理数无理数整数分数正无理数负无理数正分数负分数负整数自然数正整数零3.实数的分类3、实数的分类:

实数正实数负实数零

4、以下由学生完成:(1)、把下列各数填入相应的圈内

0、、2.5、、、-6、、8%、19

整数集合分数集合无理数集合

(2).把下列各数填入相应的大括号内1、-10、、、-2、3.6、、—0.1、8、负有理数集合:{}

整数集合:{}

正实数集:{}

无理数集:{}

3.解不等式组(1)2x-3〈5

4.绝对值小于3的整数是—————————————————三、[学习互动]1、观察下列对象(1)2,4,6,8,10,12;(2)所有的直角三角形;(3)与一个角的两边距离相等的点;(4)满足x-3>2的全体实数;(5)本班全体男生;(6)我国古代四大发明;(7)2007年本省高考考试科目;(8)2008年奥运会的球类项目,

《集合(一)教学案例》通过学生观察以上对象后,教师提问:[集合的概念](1)集合是什么?某些指定的对象集在一起就成为一个集合,简称集。(2)什么是集合的元素?集合中的每个对象叫做这个集合的元素。(3)集合、集合的元素怎样表示?一般用大括号表示集合且常用大写字母表示;集合中的元素用小写字母表示。(4)集合中的元素与集合的关系a是集合A的元素,称a属于A,记作a∈A;a不是集合A的元素,称a不属于A,记作aA。2、探讨下列问题(1){1,2,2,3}是含有1个1、2个2、1个3的集合吗?(2)的科学家能构成一个集合吗?(3){a,b,c,d}与{b,c,d,a}是否表同一个集合?通过师生共同探讨得出下面结论:通过师生共同探讨得出结论:[集合中的元素的性质]确定性:集合中的元素必须是确定的。集合的元素的特点互异性:集合中的元素必须是互异的。无序性:集合中的元素是无先后顺序的。组成集合的元素可以是:数、图、人、事物等。[常用数集的表示](1)自然数集:用N表示(2)正整数集:用N﹡或N+表示(3)整数集:用Z表示(4)有理数集:用Q表示(5)实数集:用R表示(正实数集用R__或R+表示)四、[四、[互动参与]例1下面的各组对象能否构成集合是()(A)所有的好人(B)小于2004的实数(C)和2004非常接近的数(D)方程x2-3x+2=0的根例2用符号填空(1)3.14Q(2)πQ(3)0N+(4)0N

32(5)(-2)0N__(6)Q

3232(7)Z(8)—R

五、[分层议练]1、选择题(1)下列不能形成集合的是()A、所有三角形B、《高一数学》中的所有难题C、大于π的整数D、所以的无理数2、判断正误(1){x2,3x+2,5x3-x}={5x3-x,x2,3x+2}()(2)若4x=3,则xN()(3)若xQ,则xR()(4)若xN,则xN+()

常用数集属于a∈AN、N__(或N+)、Z、Q、R。集合集合的概念元素与集合的关系集合中元素的性质确定性互异性无序性不属于aA

本节课设计的目的:通过创设情境激发学生的学习兴趣,课前预习培养学生的自学能力;多媒体辅助教学提高课堂效益,使教学呈现方式多样化;探索现代教学手段与高中数学教学的整合。

高一数学教案篇4

一、教材分析及处理

函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状

学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二、教学三维目标分析

1、知识与技能(重点和难点)

(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

(3)、掌握定义域的表示法,如区间形式等。

(4)、了解映射的概念。

2、过程与方法

函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

(2)、面向全体学生,根据课本大纲要求授课。

(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

3、情感态度与价值观

(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。

(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

三、教学器材

多媒体ppt课件

四、教学过程

教学内容教师活动学生活动设计意图

《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接

新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题

对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

五、教学评价

为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

高一数学教案篇5

一、课标要求:

理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

二、知识与方法回顾:

1、充分条件、必要条件与充要条件的概念:

2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

5、化归思想:

表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

这里要注意原命题逆否命题、逆命题否命题只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

6、数形结合思想:

利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

三、基础训练:

1、设命题若p则q为假,而若q则p为真,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2、设集合M,N为是全集U的两个子集,则是的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

3、若是实数,则是的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

四、例题讲解

例1已知实系数一元二次方程,下列结论中正确的是()

(1)是这个方程有实根的充分不必要条件

(2)是这个方程有实根的必要不充分条件

(3)是这个方程有实根的.充要条件

(4)是这个方程有实根的充分不必要条件

A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)

例2(1)已知h0,a,bR,设命题甲:,命题乙:且,问甲是乙的()

(2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

变式:a=0是直线与平行的条件;

例3如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

的充分条件,那么命题p是命题q的条件;命题s是命题q的条件;命题r是命题q的条件.

例4设命题p:4x-31,命题q:x2-(2a+1)x+a(a+1)0,若﹁p是﹁q的必要不充分条件,求实数a的取值范围;

例5设是方程的两个实根,试分析是两实根均大于1的什么条件?并给予证明.

五、课堂练习

1、设命题p:,命题q:,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2、给出以下四个命题:①若p则q②若﹁r则﹁q③若r则﹁s

④若﹁s则q若它们都是真命题,则﹁p是s的条件;

3、是否存在实数p,使是的充分条件?若存在,求出p的取值范围;若不存在说明理由.

六、课堂小结:

七、教学后记:

高三班学号姓名日期:月日

1、AB是AB=B的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2、是的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

3、2x2-5x-30的一个必要不充分条件是()

A.-

4、2且b是a+b4且ab的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

5、设a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么是M=N的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分又不必要条件

6、若命题A:,命题B:,则命题A是B的条件;

7、设条件p:x=x,条件q:x2-x,则p是q的条件;

8、方程mx2+2x+1=0至少有一个负根的充要条件是;

9、关于x的方程x2+mx+n=0有两个小于1的正根的一个充要条件是;

10、已知,求证:的充要条件是;

11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分条件,求实数m的取值范围。

12、已知关于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

(1)方程有两个正根的充要条件;

(2)方程至少有一正根的充要条件.

高一数学教案篇6

一、教学目标

1、知识与技能

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路

(一)创设情景,揭示课题

1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

(二)、研探新知

1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、课本P8,习题1.1A组第1题。

4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

高一数学教案篇7

目标:

(1)使学生初步理解集合的概念,知道常用数集的概念及其记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

重点:集合的基本概念

教学过程:

1.引入

(1)章头导言

(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)

2.讲授新课

阅读教材,并思考下列问题:

(1)有那些概念?

(2)有那些符号?

(3)集合中元素的特性是什么?

(4)如何给集合分类?

(一)有关概念:

1、集合的概念

(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.

(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.

(3)元素:集合中每个对象叫做这个集合的元素.

集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……

2、元素与集合的关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

要注意“∈”的方向,不能把a∈A颠倒过来写.

3、集合中元素的特性

(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

(2)互异性:集合中的元素一定是不同的.

(3)无序性:集合中的元素没有固定的顺序.

4、集合分类

根据集合所含元素个属不同,可把集合分为如下几类:

(1)把不含任何元素的集合叫做空集Ф

(2)含有有限个元素的集合叫做有限集

(3)含有无穷个元素的集合叫做无限集

注:应区分,0等符号的含义

5、常用数集及其表示方法

(1)非负整数集(自然数集):全体非负整数的集合.记作N

(2)正整数集:非负整数集内排除0的集.记作N_或N+

(3)整数集:全体整数的集合.记作Z

(4)有理数集:全体有理数的集合.记作Q

(5)实数集:全体实数的集合.记作R

注:(1)自然数集包括数0.

(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_

课堂练习:教材第5页练习A、B

小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质

课后作业:第十页习题1-1B第3题

高一数学教案篇8

一、教学目标:

1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.

2.培养广泛联想的能力和热爱数学的态度.

二、教学重点:

在于让学生领悟生活中处处有变量,变量之间充满了关系

教学难点:培养广泛联想的能力和热爱数学的态度

三、教学方法:

探究交流法

四、教学过程

(一)、知识探索:

阅读课文P25页。实例分析:书上在高速公路情境下的问题。

在高速公路情景下,你能发现哪些函数关系?

2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?

问题小结:

1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。

2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。

3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

(二)、新课探究——函数概念

1.初中关于函数的定义:

2.从集合的观点出发,函数定义:

给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;

此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。

定义域,值域,对应法则

4.函数值

当x=a时,我们用f(a)表示函数y=f(x)的函数值。

高一数学教案篇9

学习目标

1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

2、掌握标准方程中的几何意义

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

一、预习检查

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

二、问题探究

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率、

例3(理)求离心率为,且过点的双曲线标准方程、

三、思维训练

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则、

四、知识巩固

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是、

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为、

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和、求双曲线的离心率的取值范围、

高一数学教案篇10

教学准备

教学目标

知识目标

等差数列定义等差数列通项公式

能力目标

掌握等差

数列定义等差数列通项公式

情感目标

培养学生的观察、推理、归纳能力

教学重难点

教学重点

等差数列的概念的理解与掌握

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由__《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观察——发现

一、等差数列定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:…。

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

则由定义可得:

a2—a1=d

a3—a2=d

a4—a3=d

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。代入通项公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=—2,先求出通项公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

练习

1。判断下列数列是否为等差数列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在数列{an}中a1=1,an=an+1+4,则a10=。

提示:d=an+1—an=—4

教师继续提出问题

已知数列{an}前n项和为……

高一数学教案篇11

一、教学目标:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:

向量的性质及相关知识的综合应用。

三、教学过程:

(一)主要知识:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略

四、小结:

1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

高一数学教案篇12

【考点阐述】

两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

【考试要求】

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

【考题分类】

(一)选择题(共5题)

1.(海南宁夏卷理7)=()

A.B.C.2D.

解:,选C。

2.(山东卷理5文10)已知cos(α-)+sinα=

(A)-(B)(C)-(D)

解:,,

3.(四川卷理3文4)()

(A)(B)(C)(D)

【解】:∵

故选D;

【点评】:此题重点考察各三角函数的关系;

4.(浙江卷理8)若则=()

(A)(B)2(C)(D)

解析:本小题主要考查三角函数的求值问题。由可知,两边同时除以得平方得,解得或用观察法.

5.(四川延考理5)已知,则()

(A)(B)(C)(D)

解:,选C

(二)填空题(共2题)

1.(浙江卷文12)若,则_________。

解析:本小题主要考查诱导公式及二倍角公式的应用。由可知,;而。答案:

2.(上海春卷6)化简:.

(三)解答题(共1题)

1.(上海春卷17)已知,求的值.

[解]原式……2分

.……5分

又,,……9分

.……12分文章

高一数学教案篇13

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

四、课时安排

1课时

五、教B具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

高一数学教案篇14

一、教材分析

1.教学内容

本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

2.教材的地位和作用

函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

3.教材的重点﹑难点﹑关键

教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念.

教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程.

4.学情分析

高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.

二、目标分析

(一)知识目标:

1.知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

2.能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

3.情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

(二)过程与方法

培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。

三、教法与学法

1.教学方法

在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。

2.学习方法

自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。

四、过程分析

本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。

(一)问题情景:

为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)

新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)函数单调性的定义引入

1.几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:

问题1、观察下列函数图象,从左向右看图象的变化趋势?

问题2:你能明确说出“图象呈上升趋势”的意思吗?

通过学生的交流、探讨、总结,得到单调性的“通俗定义”:

从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?

通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。

设计意图:通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。通过学生已学过的一次y=2x+4,的图象的动态形式形象地反映出x、y间的变化关系,使学生对函数单调性有感性认识。从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。

(三)增函数、减函数的定义

在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。

定义中的“当x1x2时,都有f(x1)

注意:(1)函数的单调性也叫函数的增减性;

(2)注意区间上所取两点x1,x2的任意性;

(3)函数的单调性是对某个区间而言的,它是一个局部概念。

让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。

设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。

(四)例题分析

在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。

2.例2.证明函数在区间(-∞,+∞)上是减函数。

在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。

变式一:函数f(x)=-3x+b在R上是减函数吗?为什么?

变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。

错误:实质上并没有证明,而是使用了所要证明的结论

例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。

(五)巩固与探究

1.教材p36练习2,3

2.探究:二次函数的单调性有什么规律?

(几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。

设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。

通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。

(六)回顾总结

通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。

设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。

(七)课外作业

1.教材p43习题1.3A组1(单调区间),2(证明单调性);

2.判断并证明函数在上的单调性。

3.数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。

设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。

(七)板书设计(见ppt)

五、评价分析

有效的概念教学是建立在学生已有知识结构基础上,因此在教学设计过程中注意了:第一.教要按照学的法子来教;第二在学生已有知识结构和新概念间寻找“最近发展区”;第三.强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。

高一数学教案篇15

第一节集合的含义与表示

学时:1学时

[学习引导]

一、自主学习

1.阅读课本.

2.回答问题:

⑴本节内容有哪些概念和知识点?

⑵尝试说出相关概念的含义?

3完成练习

4小结

二、方法指导

1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系

3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法

[思考引导]

一、提问题

1.集合中的元素有什么特点?

2、集合的常用表示法有哪些?

3、集合如何分类?

4.元素与集合具有什么关系?如何用数学语言表述?

5集合和是否相同?

二、变题目

1.下列各组对象不能构成集合的是()

A.北京大学2008级新生

B.26个英文字母

C.著名的艺术家

D.2008年北京奥运会中所设定的比赛项目

2.下列语句:①0与表示同一个集合;

②由1,2,3组成的集合可表示为或;

③方程的解集可表示为;

④集合可以用列举法表示。

其中正确的是()

A.①和④B.②和③

C.②D.以上语句都不对

[总结引导]

1.集合中元素的三特性:

2.集合、元素、及其相互关系的数学符号语言的表示和理解:

3.空集的含义:

[拓展引导]

1.课外作业:习题11第题;

2.若集合,求实数的值;

3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.

撰稿:程晓杰审稿:宋庆

高一数学教案篇16

学习重点:了解弧度制,并能进行弧度与角度的换算

学习难点:弧度的概念及其与角度的关系。

学习目标

①了解弧度制,能进行弧度与角度的换算。

②认识弧长公式,能进行简单应用。对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。

③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题。

教学过程

一、自主学习

1、长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。这种度量角的单位制称为。

2、正角的弧度数是数,负角的弧度数是数,零角的弧度数是。

3、角的弧度数的绝对值。(为弧长,为半径)

4:完成特殊角的度数与弧度数的对应表。

角度030456090120

弧度

角度135150180210225240

弧度

角度270300315330360

弧度

5、扇形面积公式:。

二、师生互动

例1把化成弧度。

变式:把化成度。

小结:在具体运算时,弧度二字和单位符号rad可省略,如:3表示3rad,sin表示rad角的正弦。

例2用弧度制表示:

(1)终边在轴上的角的集合;

(2)终边在轴上的角的集合。

变式:终边在坐标轴上的角的集合。

例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。

三、巩固练习

1、若=—3,则角的终边在()。

A、第一象限B、第二象限

C、第三象限D、第四象限

2、半径为2的圆的圆心角所对弧长为6,则其圆心角为。

四、课后反思

五、课后巩固练习

1、用弧度制表示终边在下列位置的角的集合:

(1)直线y=x;(2)第二象限。

2、圆弧长度等于截其圆的内接正三角形边长,求其圆心角的弧度数,并化为度表示。

高一数学教案篇17

本学期,我担任高一(25)、(26)、(27)、(28)四个班的化学教育教学工作。

一、指导思想

认真学习教育部《基础教育课程改革纲要》和《普通高中研究性学习实施建议》,认真学习《普通高中化学课程标准》,明确当前基础教育课程改革的方向,深刻理解课程改革的理念,全面推进课程改革的进行。

在教学中,贯彻基础教育课程改革的改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程;改变课程内容&39;难、繁、偏、旧&39;和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能;改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力的课程观。

二、教学要求

1、认真研究当前教育改革发展趋势,转变传统教学观念,注重学生能力培养,以培养学生创新意识和综合能力为重点,重视科学态度和科学方法的教育,寓思想教育与课堂教学之中,促进学生健康发展,深化教育改革。

2、加强教学研究,提高教学质量。提倡以科研带教学,以教学促科研,使教学工作课题化。教师要努力提高教科研的意识和能力,积极探讨科学合理、适应性强的实验方案,改革课堂教学方法,积极进行研究性学习的探索,不断提高教学水平和专业知识水平,开拓新的课堂教学模式。在备课活动中,要把课堂教学改革,德育教育放在首位。

在教学目标、方法、内容的确定、作业的布置与批改、单元的测试与评估、课内外辅导活动中要从有利于培养学生高尚道德情操,创新精神和实践能力去思考设计。

3、做好调查研究,真正了解高一文、理科学生的实际情况。要认真研究学法,加强对学生学习方法的指导,加强分类指导,正确处理对不同类学校和不同类学生的教学要求,注重提高学生学习化学的兴趣。在教学中,努力发挥学生的主体作用和教师的指导作用,提高教学效率。提倡向40分钟要质量,反对加班加点磨学生的低劣教学方法。

4、注重知识的落实,加强双基教学,加强平时的复习巩固,加强平时考查,通过随堂复习、单元复习和阶段复习及不同层次的练习等使学生所学知识得以及时巩固和逐步系统化,在能力上得到提高。

5、加强实验研究,重视实验教学,注重教师实验基本功培训,倡导改革实验教学模式,增加学生动手机会,培养学生实践能力。

6、要发挥群体优势,发挥教研备课组的作用,依靠集体力量,在共同研究的基础上设计出丰富多彩的教学活动。

高一数学教案篇18

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一数学教案篇19

一、教材分析

1、教材的地位和作用

(1)本节课主要对函数单调性的学习;

(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用

2、教材重、难点

重点:函数单调性的定义

难点:函数单调性的证明

重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

二、教学目标

知识目标:

(1)函数单调性的定义

(2)函数单调性的证明

能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

情感目标:培养学生勇于探索的精神和善于合作的意识

(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

三、教法学法分析

1、教法分析

“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

2、学法分析

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

(前三部分用时控制在三分钟以内,可适当删减)

四、教学过程

1、以旧引新,导入新知

通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

2、创设问题,探索新知

紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

3、例题讲解,学以致用

例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

4、归纳小结

本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

高一数学教案篇20

本学期我担任高一的英语教学工作,任教班级分别为高一440班和438班。为了更好的进行教学,明确教学任务,特制定此教学计划,以促进教学工作。以教学大纲,新课改的具体要求为依据,根据本届高一学生的具体学情,制定全面的、系统的、针对性强的教学计划,从高一抓起,充分提高我校学生的英语基础水平。认真研读课本,谦虚而积极地向优秀的同行学习,收集相关资料信息,密切关注高考动态对本届高一学生发展的影响,从而作出最快的调整,使教学工作不偏离方向,有效提高教学质量。联系学生的实际情况,充分调动学生的学习积极性和自主性,尽努力让学生主导课堂,教师引导课堂,双管齐下,扎扎实实学好基础,并提高学生的综合素质和解题技巧,以适应新的形势和要求。

一、学生现状分析

这2个班级是普通班,两个班级的平均水平相差不大,底子薄弱的同学比例大。不少同学的学习态度还没转变,学习方法也须慢慢纠正。学生中有这样一种顽劣思想,"现在离高考还早着呢,玩得开心最重要,以后大不了再临时抱佛脚"。学生上课效率低,作业马虎甚至不交,课外时间全部放在休闲游戏上,上课睡觉或者无所事事的现象时有发生。还有一些学生则是由于缺乏坚持不懈的毅力,不喜欢背诵、记忆,只满足于课堂上听听课,课后没有复习、课前没有预习,导致英语成绩提高缓慢。

二、教学措施

1.教学目标:高一年级是高中的重要阶段,又是高中三年学习打好基础的关键时期。因此,让学生在高一阶段扎实地掌握基础对其今后学业发展极其重要。在本学期内,我期望达到以下目标:巩固扩大基础知识,培养口头和书面初步运用英语进行交际的能力,侧重培养阅读能力,发展智力,培养自学能力。协助学生通过学业水平测试。

2.教学方法与措施

(1)帮助学生养成良好的学习习惯,指导他们掌握有效的学习方法。坚持每天朗读,学会背诵的有效方法;利用每天的零碎时间反复多记忆单词,学会记忆单词的多种方法;学会观察语言现象,总结语言规律(如通过例句总结出词的词性,用法等);养成良好的作业习惯,掌握各种解题技巧;坚持预习,锻炼自学,积极思考,大胆质疑;学会记笔记和整理错题。

(2)强化词汇、阅读训练。对于词汇教学,运用词汇联想的记忆方法,拓展学习知识面。同时坚持不懈地积累词汇量,不断反复,及时巩固。本学期继续抓住统编教材的词汇,同时适当扩大英文报刊的阅读量,以扩大词汇量、增强阅读能力。短文阅读是吸收信息、学习语言、提高水平的最有效途径,因此,提高学生的阅读理解能力是教学的重要目标之一。本学期将有计划地坚持每周补充一份周报,包含单项选择,完型填空,阅读理解和改错等内容以辅助教学,并且除了配套的练习之外,每周有效选择课外阅读文章两篇,让学生在广泛阅读中提高阅读理解能力。

(3)坚持对听力训练、写作训练常抓不懈,对学生平时的学习情况做好记录与反馈。

(4)适当地调整课堂,增加提问方式,适量地让学生听英文歌曲或简单有趣的英语小故事,以提高学生的学习兴趣。改变传统教学模式,尽量做到让学生教学生,更多地把课堂时间和空间留给学生。

高一数学教案篇21

一、教学目标

1、知识与技能目标:认识一元二次方程,并能分析简单问题中的数量关系列出一元二次方程。

2、过程与方法:学生通过观察与模仿,建立起对一元二次方程的感性认识,获得对代数式的初步经验,锻炼抽象思维能力。

3、情感态度与价值观:学生在独立思考的过程中,能将生活中的经验与所学的知识结合起来,形成实事求是的态度以及进行质疑和独立思考的习惯。

二、教学重难点

重点:理解一元二次方程的意义,能根据题目列出一元二次方程,会将不规则的一元二次方程化成标准的一元二次方程。

难点:找对题目中的数量关系从而列出一元二次方程。

三、教学过程

(一)导入新课

师:同学们我们就要开始学习一元二次方程了,在开始讲新课之前,我们首先来看一看第二十二章的这张图片,图片上有一个铜雕塑,有哪位同学能告诉我这是谁吗?

生:老师,这是雷锋叔叔。

师:对,这是辽宁省抚顺市雷锋纪念馆前的雷锋雕像,雷锋叔叔一生乐于助人,奉献了自己方便了他人,所以即使他去世了,也活在人们心中,所以人们才给他做一个雕塑纪念他,同学们是不是也要向雷锋叔叔学习啊?

生:是的老师。

师:可是原来纪念馆的工作人员在建造这座雕像的时候曾经遇到了一个问题,也就是图片下面的这个问题,同学们想不想为他们解决这个问题呢?

生:想。

师:同学们也都很乐于助人,好那我们看一看这个问题是什么,然后带着这个问题开始我们今天的学一元二次方程。

(二)新课教学

师:我们来看到这个题目,要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为全高?同学们用AC来表示上部,BC来表示下部先简单列一下这个比例关系,待会老师下去看看同学们的式子。

(下去巡视)

(三)小结作业

师:今天大家学习了一元二次方程,同学们回去还要加强巩固,做练习题的1、2(2)题。

四、板书设计

五、教学反思

高一数学教案篇22

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:

第一:从实际问题中提炼出抽象的概念;

第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一数学教案篇23

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案篇24

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15练习1、2;P20习题1.2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2[A组]1。

高一数学教案篇25

一、教学目标

1、知识与技能:

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的图片,

思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影图片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影图片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影图片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(四)巩固深化

练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题

(五)归纳整理:由学生整理学习了哪些内容

高一数学教案篇26

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

高一数学教案篇27

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

教学建议

教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高一数学教案篇28

教学目标:

1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.

2.培养学生数形结合的思想,以及分析推理的能力.

教学重点:

对数函数性质的应用.

教学难点:

对数函数的性质向对数型函数的演变延伸.

教学过程:

一、问题情境

1.复习对数函数的性质.

2.回答下列问题.

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3.情境问题.

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题.

三、数学运用

例1求函数y=log2(x2+2x+2)的&39;定义域和值域.

练习:

(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.

(2)函数,x(0,8]的值域是.

(3)函数y=log(x2-6x+17)的值域.

(4)函数的值域是_______________.

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(-x)

例3已知loga0.75>1,试求实数a取值范围.

例4已知函数y=loga(1-ax)(a>0,a≠1).

(1)求函数的定义域与值域;

(2)求函数的单调区间.

练习:

1.下列函数(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).

2.函数y=lg(-1)的图象关于对称.

3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=.

4.求函数,其中x[,9]的值域.

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).

五、作业

课本P70~71-4,5,10,11.

高一数学教案篇29

各位评委、老师,大家好!

今天我要进行说课的框题是《价格变动的影响》。下面,我将从对教材的理解、对学生的分析、教法和学法、教学过程和板书设计几个方面来具体阐述。

一、首先,我们来认识教材、把握教材

1、说本框的地位和作用

《价格变动的影响》是人教版教材高一政治必修1第一单元第2课第2个框题,该框的内容实质上讲的是价值规律的作用,是第一单元《生活与消费》的重点和核心。学生在前面已经学习的货币的有关知识和价格变动的原因,为本框题的学习作了铺垫,本框题正是承接这两部分(货币的有关知识和价格变动的原因)内容,同时为第3课《多彩的消费》的学习打下基础,因此具有承上启下的作用,在经济常识中具有不容忽视的重要的地位。

2、说教学目标

关于本课,课程标准是这样要求的:归纳影响商品价格变化的`因素,理解价格变动的意义,评价商品和服务的变化对我们生活的影响。

在认真解读课程标准的前提下,根据学生的实际情况,我设立以下教学目标:

(1)知识方面:通过本框学习,使学生懂得价格变动与商品需求量之间的一般规律;面对价格的变动,知道不同商品的需求弹性不同,以及价格变动对相关商品需求量的影响。

(2)能力方面:通过本框学习,使学生能够运用价格变动对生活的影响分析相关的生活现象及解决实际生活的实践能力,培养学生透过现象看本质的能力,从而提高学生参与经济生活的水平。

(3)情感态度价值观:通过学习,使学生关心生活中的小事,认识价格的变动,增强参与经济生活的自主性,树立竞争意识,以适应激烈的市场竞争。

3、说教学重难点

重点:价格变动对人们生活和生产的影响

难点:价格变动对替代品与互补品的影响

二、说对学生的分析

高一学生对经济生活的内容很感兴趣,对经济生活中的现象有一定程度的关注和了解,有利于教学活动的开展,但我的学生主要来自农村,知识面有待拓展,表达能力也有待提高,因此我选择与生活有密切关联的、贴近学生实际的事例为主进行分析,以便激发学生的学习兴趣和参与热情,提高学生的积极性。

三、说教法和学法

(1)接下来说说我将采用的教学方法

以多媒体为辅助教学手段,采用情景探究法。第一步,创设情景,提出问题;第二步,小组讨论,自主探究;第三步,师生互动,建构知识。

(2)接下来再说说我对学生学法的指导

本着以学生为本的理念,着眼于学生的终身发展,在传授知识的同时,更加注重学习的过程,更加注重能力的培养,因而我采用了新课程提倡的自主学习、合作学习和探究学习。

四、下面我重点介绍一下我的教学过程的设计

1、创设情景,导入新课

俗话说:好的开端是成功的一半。因此在导入新课时如果能创设学生感兴趣的情境就能把学生的注意力集中起来,调动学生的积极性,引起学生的求知欲。

所以我首先在导入时创设情境:

情景设置一:《美国人梦想的破灭》这个情景讲述的是美国人生来就有这样一个梦想——有房有车。房子要大大的,前有花园,后有游泳池;汽车要豪华加长型,看着气派,跑起来威风,驾驶起来也舒适。然而,美国人的梦想正在破灭。由于次贷危机,即购房贷款不能按时缴纳而面临被银行拍卖,这使前一个梦想破灭;而后一个梦想也濒临灭亡!原因何在?石油价格的上涨(多媒体同时显示:国际油价变动情况简介:20__年28$/桶20__年120$/桶20__年82$/桶)。美国人生活区和工作地有时距离上百公里,驱车往返使美国人不堪负重。还有部分美国人不得不辞去在外地的工作转而就近就业,导致部分公司缺少员工,企业生产无法正常进行,为了留住人才,公司增加了外地工人的补贴,使企业的成本增加。由此可见,商品价格的涨跌对人们生活有重大影响,甚至影响人们的生活方式,进而影响企业的生产。

设计此例目的有二:一是调动学生的积极性,学生对美国任何风吹草动都感兴趣,特别是不利的事情;二是此例在第3课《影响消费水平的因素》可继续使用,达到一材多用的目的。

在此基础上自然过渡到本框内容:既然价格变动对人们的生活生产有这么重大的影响,那就让我们共同了解和学习价格变动的影响(在黑板上同时板书)。

2、在推进新课时我创设这样一个情景——《请给老师提点建议》

情景设置二:《请给老师提点建议》:"老师现在需要一个交通工具,可以选择的有小汽车、摩托和电动车。我该怎么选择呢?"

之所以设计这样的案例,因为他们会觉得:老师也需要我的帮助?继而会以帮助老师为荣,积极的"献计献策",从而活跃课堂气氛,进一步调动学生的积极性。

学生此时会迫不及待地帮老师进行选择,大部分学生会鼓动老师选择小汽车,首先调动起学生的参与热情。

我继续介绍相关情况:"家用小汽车售价一般在5到6万元,摩托车售价在5000元上下,电动车大约20__元。"小汽车老师是买不起的,因为价格太高了。我想其他人也会限于价格而购买者只能是一部分人。这说明了价格影响人们的需求量。价格高,人们减少对它的购买;如果汽车价格降至和摩托车差不多呢?(学生会哄笑"我们都买一辆",有学生会提出异议:不可能,价值决定价格)学生会七嘴八舌地表达自己的想法,而这,正是我要达到的效果。

我会在此基础上反问:"同学们想一想,如果大米的价格也大幅下降,人们对它的需求会不会骤然增多呢?"学生自然知道不会。如果大米的价格大幅度上涨,会减少对它的需求量吗?同样不会。于是可以得出结论:价格变动会引起需求量变动,但不同商品的需求量对价格变动的反应程度是不同的。价格变动对生活必需品需求量的影响比较小,对高档耐用品需求量的影响比较大。

"不降价我就不买了,那我只能在后两种中选择了".

同时提出两个问题:以多媒体方式显示

◆我能不能两个都买?为什么?

◆我如果不能都去选择,如果从经济实用的角度考虑,我该选哪一个?受什么影响呢?

请你提出中肯的建议,并说出选择的理由。

要求学生用3分钟时间阅读教材P15第3~5自然段。

同时用多媒体出示相关内容:"摩托车每百公里耗油量一般3升左右,每升约6元,电动车每百公里耗电量约15度,每度0.56元。"

学生通过对问题的思考与回答,结合课本自觉,他们会帮老师做出正确的选择:只能买一个——电动车。而通过理由的阐述,学生明白了摩托车和电动车是互为替代品,而对于两者进行选择时还得考虑相关的商品,就懂得了还受油价和电价的制约,了解了什么是互补商品,较易得出相关商品价格的变动对消费者需求的影响:一种商品价格上升,需求量会减少,会导致它的互补商品的需求量也减少;一种商品价格上升,需求量减少,会导致它的替代商品的需求量增加。这样学生就知道了,消费者对既定商品的需求不仅受该商品自身价格变动的影响,而且受相关商品价格变动的影响。

这就是价格变动对生活的影响,对生产经营有什么影响呢?

情景设置三:《大蒜价格的变动》。这是日常生活当中常见的,学生有深切的感受,会说出价格:5、6元一斤!引导学生思考大蒜价格的变化情况,学生说过之后用多媒体出示大蒜价格近四年来的变化。07——09.4月间,价格在0.2元/斤,09年5月份以来至今逐渐涨到了5、6元/斤,时达到8.5元/斤。

现在思考:

◆大蒜价格的涨落是怎样影响蒜农生产活动的?

◆如果我们设想,大蒜价格今后会怎样变化,原因是什么?蒜农该如何应对这种变化?

让学生前后四人为一组,用3到5分钟边阅读教材P16边进行讨论分析。由于学生主要来自农村,对此比较熟悉,甚至自己家就种植过大蒜或正在种植,有切身感受,不难得出结论:面对商品价格变动,生产者一般会调节生产,提高劳动生产率,生产适销对路的高质量产品。即价格变动对生产经营的影响。

之所以这样设计,因为这部分知识是本节课要掌握的重点所在,与学生生活实际结合的比较紧密,理论难度又不大,这样由他们自已讨论得出知识,可以增强他们的自信心,充分调动他们学习的主动性和积极性,使他们真正成为学习的主人,同时在自主探究与小组讨论的过程中,让他们学着如何自主探究学习,如何与人合作学习,最终使他们真正会学习。

在这里,我对课本上的价格与供求关系图有不同意见。我觉得如果把"价格变动"放在两头,效果会更好,也更直观的表现是由于价格的变动引起生产规模的变化。(同时用多媒体展示这一变化)

3、当堂处理一些练习题,以练习巩固学生刚掌握的知识及对知识的理解程度。在这一环节中,我会利用学生手中已有的资料,处理随堂训练。大约5——8分钟。

4、最后我预留出5分钟时间给学生自由提问,可以是本节有关内容的理解,也可以是有关的生活中遇到的不太理解的经济现象,我将力求给学生一个合理的解释,如果我也不明白,将如实告诉学生,我会下去查资料,我也要继续学习,提高自己,在下节上课时给予解决。

这所以这样设计,是要给学生一个表达自己的机会,锻炼发言的能力,同时给学生质疑与拓展开放的时空。我相信学生:我给学生一个天地,他们还我一个惊喜!

5、作业布置:做《优化探究》最后一个主观题。

五板书设计:

各位领导、老师,我今天的说课到此结束,请各位老师多提意见,谢谢!

高一数学教案篇30

新学期开始了,本学期我担任高一(1)(2)两个班的数学教学工作,从学生的入学成绩上看,两班学生的数学基础很差,所以本学期的教学任务非常艰巨,但我仍有信心迎接这个新挑战。为了能更出色地完成教学任务,特制定计划如下:

一、本学期教材分析,学生现状分析

本学期教学内容是华师大版七年级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。观察、思考、实验、想一想、试一试、做一做等,给学生留有思考的`空间,让学生能更好地自主学习。因此对每一章的教学都要体现师生交往、互动、共同发展的过程。要求老师成为学生数学学习的组织者和引导者,从学生的生活经验和已有的知识背景出发,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本数学知识、技能、思想、方法,提高解决问题的能力。开学第一周我对学生的观察和了解中发现少部分学生基础还可以,而大部分学生基础和能力比较差,甚至加减乘除运算都不过关,更不用提解决实际问题了。所以一定要想方设法,鼓励他们增强信心,改变现状。在扎实基础上提高他们解题的基本技能和技巧。

二、确立本学期的教学目标及实施目标的具体做法。

本学期的教学目标是五章内容,力求学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。在初中的数学教学实践中,常常发现相当一部分学生一开始不适应中学教师的教法,出现消化不良的症状,究其原因,就学生方面主要有三点:一是学习态度不够端正;二是智能上存在差异;三是学习方法不科学。我以为施教之功,贵在引导,重在转化,妙在开窍。因此为防止过早出现两极分化,我准备具体从以下几方面入手:

(一)掌握学生心理特征,激发他们学习数学的积极性。

学生由小学进入中学,心理上发生了较大的变化,开始要求“独立自主”,但学生环境的更换并不等于他们已经具备了中学生的诸多能力。因此对学习道路上的困难估计不足。鉴于这些心理特征,教师必须十分重视激发学生的求知欲,有目的地时时地向学生介绍数学在日常生活中的应用,还要想办法让学生亲身体验生活离开数学知识将无法进行。从而激发他们学习数学知识的直接兴趣,数学第一章内容的正确把握能较好地做到这些。同时在言行上,教师要切忌伤害学生的自尊心。

(二)努力提高课堂45分钟效率

(1)在教师这方面,首先做到要通读教材,驾奴教材,认真备课,认真备学生,认真备教法,对所讲知识的每一环节的过渡都要精心设计。给学生出示的问题也要有层次,有梯度,哪些是独立完成的,哪些是小组合作完成的,知识的达标程度教师更要掌握。同时作业也要分层次进行,使优生吃饱,差生吃好。

(2)重视学生能力的培养

七年级的数学是培养学

生运算能力,发展思维能力和综合运用知识解决实际问题的能力,从而培养学生的创新意识。根据当前素质教育和新课改的的精神,在教学中我着重对学生进行上述几方面能力的培养。充分发挥学生的主体作用,尽可能地把学生的潜能全部挖掘出来。

(三)加强对学生学法指导

进入中学,有些学生纵然很努力,成绩依旧上不去,这说明中学阶段学习方法问题已成为突出问题,这就要求学生必须掌握知识的内存规律,不仅要知其然,还要知其所以然,以逐步提高分析、判断、综合、归纳的解题能力,我要求学生养成先复习,后做作业的好习惯。课后注意及时复习巩固以及经常复习巩固,能使学过的知识达到永久记忆,遗忘缓慢。

三、教学研究计划

课堂教学与数学改革是相铺相成的,做好教学研究能更好地为课堂教学服务。本学期将积极参加学校和备课组的各项教研活动,撰写“教学随笔”和“教学反思”。本人决定在第十一周开一堂公开课,与学校同组的老师共同探讨教学。

四、继续教育计划:

继续教育是提高教师基本技能的重要途径。本学期我积极参与校内外组织的各项继续教育,努力提升教育教学水平。

1、通过网络继续教育培训,学习新教育理念,不断完善教育教学方式。

2、阅读有关新课程的书籍,做好读书笔记。

总之,本学期的教学工作任务还有很多,需要在今后的实际工作中进一步补充和完善。

5797