教案吧 > 教案设计 > 教案范文 >

2025年数学六年级教案

时间: 新华 教案范文

编写教案的目的在于帮助教师更好地组织教学内容、规划教学流程、提高教学质量、增强教学自信心。2025年数学六年级教案规范是怎样的?下面给大家整理了一些2025年数学六年级教案,供大家参考。

2025年数学六年级教案篇1

教学内容:

冀教版《数学》六年级上册第78、79页。

教学目标:

1.结合具体情境,经历运用所学知识学习理财的过程。

2.学会理财,能对自己设计的理财方案作出合理的解释。

3.感受理财的重要性,培养科学、合理理财的观念。

教学过程:

一、问题情境

1.教师谈话,说明要研究存钱问题。

师:同学们,我们已经学会了怎样存钱,怎样计算利息。今天我们就来帮助聪聪一家做一个存钱计划。

板书:存钱计划

师:请同学们打开课本第78页,读一读上面的文字,你知道了什么?

生:聪聪的妈妈每月工资1160元,爸爸每月工资2180元。

2.让学生看书,了解聪聪爸爸、妈妈的工资和他们谈话的内容。明白为什么妈妈不纳税。师:认真观察情境图,看一看聪聪一家在干什么?

学生可能会说

在客厅里讨论做存钱计划的问题。

在讨论为聪聪上大学存钱的问题。

师:他们在说什么?

生1:妈妈说,聪聪过几年要上大学了,做一个存钱计划吧!

生2:聪聪说,一个月存多少钱呢?

生3:爸爸说,每个月工资还要纳个人税。

师:为什么爸爸的工资交税,妈妈不用交吗?

生:妈妈不用交,因为国家规定,收入超过2000元的才要交纳个人所得税。

二、存钱计划

1.提出“计算聪聪家每月的收入多少钱”的要求,让学生自己计算,并交流计算结果。

师:请同学们帮聪聪算一算,爸爸妈妈每个月工资收入多少钱?

学生算完后,全班订正。

教师板书

(2180-2000)×5%=9(元)

2180-9+1180=3351(元)

2.讨论:每个月的收入多存入银行可以吗?让学生充分发表个人的意见。使学生了解,为了你让家庭的正常生活,一般只考虑固定收入。师:大家算出了聪聪爸爸妈妈每个月的工资收入,这些钱都存入银行可以吗?说说你的意见。

学生可能出现不同意见

(1)不行,因为吃饭、上学买东西都要花钱。

(2)行。爸爸妈妈每个月还有奖金或其他收入。

只出现第(1)种意见,教师肯定。出现两种意见,教师参与讨论。

师:--同学们说的有一定道理。但是,现实生活中,人们的奖金都不是固定的,或每个月都有的。所以,做存钱计划时,为了你让家里正常的生活,一般只考虑固定的工资收入比较理智。

3.让学生了解聪聪家一个月支出的项目和大约钱数。特别理解“大约”的意思,然后口算出每个月支出的钱数,并计算出每个月结余的钱数。师:那聪聪家一个月存多少钱比较合适呢?教材上给出了聪聪每个月支出项目的大约钱数。注意是大约钱数。谁知道这个大约钱数是什么意思?

生1:就是大概的钱数。

生2:有的月可能多一些,有的月可能少一些。

师:请同学们口算一下,聪聪家每个月支出多少钱?

学生口算,教师板书出结果:1280元。

师:每个月可以结余多少钱呢?

学生说,教师板书

3351-1280=2071(元)

4.提出帮聪聪家做存钱计划的要求,启发学生从生活实际出发,合理提出存钱建议。并算一算到期能取回多少钱。师:通过计算,我们知道了聪聪家现在每个月大约可以结余2071元,请你帮聪聪家做一个存钱计划,一定要从生活实际出发,看看谁的计划最合理。

学生自己做计划,然后交流。

5.交流学生做的计划。给学生充分展示自己个性化方案的机会。师:谁来说一说你做的计划,说一说你这样计划的想法。

给学生充分发表自己建议的机会,只要想法有一定的道理,就要给予肯定。对那些考虑到生活中的现实问题的同学,要提出表扬。

三、存钱方案

教师口述聪聪爸爸获得奖金并存钱的事情,说明是税后所得,提出小组合作做三个存钱方案的要求。

师:同学们根据聪聪家每个月的固定收入做出了存钱计划。聪聪很感谢大家。同时,还有一个关于存钱的问题,希望大家帮他出主意。事情是这样的,聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板给他5000元奖金。

板书:5000元奖金

师:注意这5000元奖金可是已缴纳过个人所得税哦!现在,请同学们小组合作,每个组做出三个存钱方案,并算出每种方案可获得的利息。大家可以先讨论方案,要说明方案的理由,然后分头计算。

师:哪个小组说一说是怎样考虑的,汇报一下你们做的方案,制定方案的计算出的利息是多少?哪个小组先汇报一下。

各小组交流汇报,重点说一说是怎样考虑的,这存钱有什么好处等,教师要及时评价,同时将存钱和利息板书出来。

师:大家做出了这么多存钱方案,你认为哪种存钱方案?说明理由。

给学生充分表达自己意见的机会,重点关注学生是如何阐述理由的,对于有独到见解的同学要给予表扬。

师:相信同学们通过今天这节课,都具备了一定的理财能力,回家后把你做的存钱计划给爸爸妈妈看,请他们做出评价。

2025年数学六年级教案篇2

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、

培养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:掌握圆锥的特征。

教学难点:正确理解圆锥的组成。

教学准备:学生利用教材附页制作圆锥。

教学过程:

一、复习

同学们,前面我们认识了圆柱,谁能说一说圆柱各部分的名称及其特征?

二、新课

出示圆锥实物图,并从实物图中抽象出立体图形。师:像这样的形状叫圆锥,你还见过哪些圆锥形的物体?

1、圆锥的认识

(1)让学生拿出准备好的着圆锥看一看,摸一摸,它是由哪几部分组成的?指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。圆锥有多少条高?为什么?(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。读数时要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将直角三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

小结:谁能归纳一下圆锥有什么特征?

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

2025年数学六年级教案篇3

教材分析

这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

学情分析

在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

教学目标

逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

教学重点和难点

1、能确定单位“1”,理清题中的数量关系。

2、利用题中的等量关系用方程解答。

教学过程

一、1、苹果的重量是X千克,梨的重量比苹果多5千克。

⑴、梨的重量比苹果多了()千克。

⑵、梨的重量是()千克。

2、钢笔X元,比毛笔少了3元。

⑴、钢笔比毛笔少了()元。

⑵、毛笔是()元。

3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、新授课

1、教学补充例题:水果店运来了一些苹果,已经卖了36千克,还剩下20千克,水果店运来了多少苹果?

(1)卖了是什么意思?应该把哪个数量看作单位“1”?

(2)引导学生理解题意,画出线段图。

(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

(4)指名列出方程。解:设运来苹果X千克。

x-36=20

2、教学例2

(1)出示例题,理解题意。

(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的(1+)

(2)学生试画出线段图。

(3)根据线段图,结合题中的分率句,列出数量关系式:

航模小组人数+美术小组比航模小组多的人数=美术小组人数

(4)根据等量关系式解答问题。

解:设航模小组有人。

(1+)=25

=25÷

=20

答:略。

三、小结

1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

四、练习

练习十第4、12、14题。

2025年数学六年级教案篇4

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

正确理解比的意义。

1、通过实物及学过的关系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的关系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

导语:(教师自备)

板书:比

2、教学比难道意义。

1、)红旗长和宽的关系,也可以这样说:

长和宽的比是2比3,

宽和长的比是2比3。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

3、)学生讨论比的意义。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2记作3:2。

2比3记作2:3。

100比2记作100:2。

2、)比的读法。

3、)比的各部分的名称:

3:2=3÷2=3/2

前项比号后项比值

4、)比值;

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的“做一做”的题目。

5、教学比与除法、分数的关系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

2025年数学六年级教案篇5

教学内容:

人教版小学数学教材六年级上册第54页例2及相关练习。

教学目标:

1.能在实例的分析中理解按比分配的实际意义。

2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

教学重点:

理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

教学难点:

自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

教学准备:

课件。

教学过程:

一、情境导入

课件出示:女生与男生的人数比是5:7。

师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?

【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。

二、实例探究

(一)自主探索

1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。

师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?

2.学生独立尝试。

3.同桌交流。

师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)

4.汇报

请不同做法的学生上台板演,交流汇报。

预设(1):48÷(5+7)=4(人);

女生:4×5=20(人);

男生:4×7=28(人)。

师:介绍一下你的想法吧。第一步求的是什么?第二步和第三步分别是什么意思?这种方法是先求什么?再算什么?

师:还有不同的解决方法吗?

预设(2):女生:(人);

男生:(人)。

师:这种方法中,是什么意思?呢?

5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。

方法一是根据比的意义,看看一共分成几份,先求出一份的数量,再算几份的数量;方法二是根据比与分数的关系,看看男生、女生各占总人数的几分之几,再用分数的知识来解决。这两种方法都不失为好方法,你更喜欢哪种方法?为什么?

【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。

(二)揭示课题

师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)

(三)实践尝试

出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。

1.阅读与理解。

浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)

师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)

2.分析与解答。

预设(1):每份是500÷5=100(mL),浓缩液有100×1=100(mL),水有100×4=400(mL)。

师:这里的5表示什么?(把总体积平均分成5份。)

预设(2):浓缩液有(mL),水有(mL)。

师:表示什么?(浓缩液占总体积的;)

呢?(水占总体积的。)

3.回顾与反思。

师:可以用怎样的方法对结果进行验证?

预设:看浓缩液与水的比是不是等于1:4。

小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。

【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

三、实践应用

(一)基本练习

1.师:打开教材第55页,看第一题。

(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。

(2)交流:说说你的方法。

2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。

师:请你来设计一下,可以怎么分配?

预设一:1:1。

师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)

师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。

对于其余各种分配方法,都让学生快速算一算再交流。

(二)发展提高

1.师:增加点难度行不行?我把这一题变一下。

出示教材第56页第7题:李伯伯家里的菜地共800平方米,他准备用种西红柿,剩下的按2:1的面积比种黄瓜和茄子。三种蔬菜的面积分别是多少平方米?

(1)比较:这一题和前几题相比,有什么不同?

(2)分析:这一题是把哪个数量进行分配,按怎样的比来分配?这个数量直接告诉我们了吗?所以我们应该先算什么?那你会算吗?

(3)学生尝试。

(4)交流算法。

师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。

师:这几位同学的方法有什么共同点?有什么不同点?

2.出示:学校把栽70棵树的任务按照六年级三个班的人数分配给各班。一班有46人,二班有44人,三班有50人。三个班各应栽多少棵树?

(1)比较分析

师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?

师:我们可以先求出比,再按比进行分配。

(2)学生独立尝试,交流算法。

(三)小结

师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?

师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。

【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。

四、课堂总结

1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)

2.课外延伸。

师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。

【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。

2025年数学六年级教案篇6

教材分析:

“合理存款”是在教学完百分数的意义与纳税、折扣、利率等知识的基础上安排的一节活动课。

活动构成:

1、明确问题。主要围绕“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开,该问题共蕴含着三个关键的信息:本金、可存款年限及资金用途。

2、收集信息。主要包括人民币储蓄存款利率、教育储蓄存款可存的期限以及相应的利率,国债的购买及其利息的计算等。课前,学生可以通过去银行咨询以及查阅相关规定的方式获得信息。

3、设计方案。就是从收集到的信息中筛选出有价值的相关实用信息,设计出具体的、不同的储蓄存款方案。

4、选择方案。即从上述各种可行性方案中选取收益的,化方案合理存款,并计算出到期时的总收入。教材这样编排,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的相关知识,并综合运用这些知识解决实际问题,在学会与人合作、交流的同时,获得运用数学知识解决问题的思考方法。

活动目标:

1、使学生巩固对存款的认识,了解教育储蓄及国债利率的有关知识。

2、学习综合运用储蓄存款的相关知识解决实际问题。

3、使学生认识到数学应用的广泛性并培养学生的投资意识。

活动重、难点:

使学生能自主探索合理存款的收益问题的方法。

学具准备:

学生每人一台计算器。

一、旧知铺垫,引入活动

1、复习:杨晨用8000元一年期存款的利息买了一台复读机,这台复读机的价格是多少?

8000×2.25%×1×(1—20%)=160元

问:算式中,本金和利息各是多少元?2.25%、20%各表示什么?你是通过哪些渠道或方式了解到的?

2、引入:把暂时不用的钱存入银行,不仅可以支援国家建设,还可以让本钱增值。存款的方式多种多样,不同形式的存款,获得的收益也会不一样。现在有一个问题:妈妈准备给小灵存1万元,供六年后上大学用,同学们计算分析一下,应该选择哪种存款方式收益?为什么?

二、合作学习,探究方案

1、小组合作探究

2、汇报交流

预设:

生1:选择存款期限长的,这样利息会高一些。

生2:定期存款要考虑利息税。

生3:国债和教育储蓄免征利息税,都可以考虑。

生4:国债的利率比教育储蓄的利率相对低一些,可以优先考虑教育储蓄。

师:课本第111页有两个表格,请同学们再次发挥小组成员各自的聪明才智,按照你们的思路设计存款方案,看看哪些方案的存款利息较高。

3、小组合作,设计方案

4、每组交流一种方案,说说这种方案为什么取得的利息高而且合理。

师:(根据汇报)看来每个小组都有自己的合理获得利息的存款方式。根据大家的汇报,老师把各小组化的方案整理了一下,我们一起来看看。

问:对比后,你有哪些想法?如何存款算是合理的?定期存款方案为什么不考虑了?

学生各抒己见。

师:通过探讨,我们知道了存款有许多方式。在生活中,只要我们仔细研究,认真发现,就能获取的方案,让存款合理的获利。

三、活学活用,解决问题

师:刚才同学们所设计的方案是六年后才取这笔钱的。现在,老师这里也有1万元钱,这1万元四年内不使用,四年后可能会随时取出。请同学们为老师设计一个存款方案,使方案获益。

1、学生分组讨论,设计方案。

2、学生汇报,学生评述。

四、活动结束,畅谈收获

1、这节课你有什么感受和收获?

2、你还有哪些需要?

2025年数学六年级教案篇7

教学内容:

人教版小学数学教材六年级下册第98~99页例2及相关练习。

教学目标:

1.了解三种统计图的不同特点,使学生知道对于同样的数据可以有多种分析方法,能根据需要选择合适的统计图,直观、有效地描述数据,培养进一步发展数据分析观念。

2.通过对三种统计图的认识、制作和选择,进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切联系。

教学重点:

了解不同统计图的特点;能根据实际问题选择合适的统计图,培养统计观念。

教学难点:

根据实际问题选择合适的统计图。

教学准备:

课件。

教学过程:

一、复习引入

1.复习扇形统计图。

上节课我们学习了扇形统计图,你对它了解了多少?

课件出示扇形统计图:我国居民平均月膳食各类食物的摄入量占总摄入量的百分比就可以用扇形统计图来表示。它能清楚地反映出各部分与总数之间的关系。

2.你还学过了哪些统计图?它们各有什么特点?

根据学生回答,课件随机点击出现相关内容。

(1)条形统计图,能清楚地看出各个数量的多少。

(2)折线统计图,不仅可以反映数量的多少,还能反映出数量增减变化趋势。

通过刚才的复习,我们发现,生活中有时用扇形统计图,有时用条形统计图,还有用到折线统计图的情况。那么人们在选择统计图时,是以什么为依据的呢?这三种统计图各有什么特点和用途呢?这就是我们本节课要研究的问题。

3.揭题:选择合适的统计图。(板书)

【设计意图】通过对三类统计图特点的复习,唤醒学生对已有知识基础的回忆,为接下来统计图的选择做好准备。

二、探究新知

1.学习教材第98页例2第(1)组数据。

课件出示

(1)绿荫小学2007-2011年校园内树木总量变化情况统计表。

仔细观察,你得到了哪些数学信息?如果让你用统计图表示这一组数据,你觉得可以用哪一种统计图?

学生:可以用折线统计图。

教师引导学生观察:统计图的横轴表示什么?竖轴表示什么?怎样确定竖轴上的数据每一格表示多少?(课件演示绘制过程)

教师:还可以用其他统计图吗?

学生:还可以用条形统计图来表示。(如果学生没有说到条形统计图,教师课件展示。)

教师:我们来看一看,条形统计图能不能把统计表中的信息完整地表示出来呢?

学生:可以把每年的树木总量表示出来;还可以通过条形的起伏看出大致的变化趋势。

引导比较:这张统计表中的信息可以用条形统计图来表示,也可以用折线统计图来表示,你觉得用哪一种更合适,为什么?可以同桌讨论。

小结:折线统计图能更加直观地表示出数量随着时间的变化趋势。相对来说,这里用折线统计图更合适一些。

【设计意图】通过对第(1)组数据的分析,让学生明确如何根据统计表所提供的数据特点来制作统计图,不局限于选择某一种统计图,以拓宽学生的思路,最后通过观察比较,选择更为合适的统计图种类。

2.学习教材第98页例2第(2)(3)组数据。

我们还对绿荫小学的树木进行了其他方面的统计,请看下方表格(课件出示统计表)。

请仔细阅读统计表信息,它们可以用什么统计图来表示?试着在练习纸上画一画。

比一比:你认为哪种统计图能更加直观地表达统计表中的信息?

交流反馈

第(2)张表格:可以用条形统计图来表示,也可以用扇形统计图来表示(课件演示)。

比较:都能表示出各种树木占树木总量的百分比,但扇形统计图能更加直观地反映出各种树木的数量和树木总量之间的关系。是的,当需要了解部分与整体之间的关系时,选择扇形统计图更合适。

第(3)张表格:给出了各种树木的数量,只能用条形统计图来表示。

为什么不用其他的统计图?

各种树种处于平等、独立的地位,用折线统计图表示是不合适的。

因为缺乏相应的百分比数据,所以也无法用扇形统计图表示。

3.课堂小结:通过刚才的学习,你知道了什么?

小结内容可以包括:三种统计图各有什么特点?在描述各种数据的时候可以用哪些统计图?其中哪些更有优势?用哪些统计统计图又是不合理的?

【设计意图】例题反映了根据不同的情况选择不同的统计图。第(2)张表格可以用不同的统计图,第(3)表格只能用一种统计图,选择什么样的统计图能更适当、清晰反映数据,通过让学生在自主分析数据以及制作、选择、比较统计图的过程中,进一步加深对三种统计图的特点的理解。

三、巩固练习

1.教材第99页“做一做”。

课件出示题目:在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。下面是我国乔木林各龄组的面积构成情况。

以上信息可以用什么统计图描述?哪种更直观?

(1)学生独立思考完成。

(2)交流反馈,根据学生回答出示统计图(可以用条形统计图完成,也可以用扇形统计图来完成)。

引导比较:用扇形统计图能更加直观地反映出它们之间的关系。

2.考考你:选择最合适的统计图。

(1)如果我想制作一个统计图,使它能够清晰地反映世界人口从1957—2014年的变化情况,你认为选择哪种统计图最合适?

(2)如果我想制作一个统计图,使它能够反映2014年各大洲人口占世界人口的百分比,你认为选择哪种统计图最合适?

(3)如果我想制作一个统计图,使它能够反映2014年各大洲人口的具体情况,你认为应该选择哪种统计图?

3.教材第103页第7题。

(1)学生独立完成。

(2)集体交流订正。

【设计意图】利用练习让学生在选择统计图的多样化选取和优化选择的过程中,进一步理解每种统计图的特点,对三种统计图产生整体的认识。

四、回顾总结,布置作业

1.这节课我们学习了什么?现在你知道如何正确选择统计图了吗?

2.课外作业:教材第104页第8题。

课后反思:

在这节课里我给予学生自主学习的时间与空间,让学生在认识扇形统计图后,自己去解决问题,领悟知识的内涵,放飞自己的思想,通过学生的自主学习体现其主体地位;而我只是学生的组织者、引导者、合作者、倾听者,通过参与学生活动中以启发、调整、激励体现主导地位。数学源于生活,又服务于生活。本课从课前准备、引例到生活拓展,注重选取与学生生活息息相关的事件进行分析研究,真正做到人人学有价值的数学,发展学生的数学应用意识,使学生进一步感受数学与生活的密切联系,享受用数学解决实际问题带来的乐趣,学生的学习效果较好,只是在语言逻辑叙述上个别同学较欠缺,有待于进一步有意识训练。

2025年数学六年级教案篇8

教学目标:

1、理解“打折”的含义,会解答有关“打折”的实际问题。

2、明确折扣应用题的数量关系和“求一个数的百分之几是多少的应用题”的数量关系相同,并能正确地解答这一类应用题。

3、使学生体会到数学与现实生活的联系,学会从数学的角度出发考虑问题,并能正确应用所学知识解决实际问题。

教学重点:

在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相等的,并能正确计算。

教学难点:

能应用“折扣”这个知识解决生活中的相关问题,体会数学的应用价值。

教学过程:

一、创设情境,激发兴趣。

师:上个周末,我回家看父母,想给他们带礼物。(你们猜老师带了什么礼物回去?)我给他们一人买了一箱牛奶吧!(幻灯出示牛奶)回家前,我逛了县城的两家超市(广源百货和派拉朦百货),结果发现两家超市的标价不同。“广源超市标价:58元”;“派拉朦超市标价:56元”。(你们觉得老师应该去哪家超市买比较好?为什么?)说来也巧,那天广源超市因为店庆搞活动,“牛奶一律八折”;而我有派拉朦超市的会员卡,在里面购物能享受“九折优惠”。(同学们,你们觉得老师到底该“去哪家购买更实惠?”)

师:我们要解决这个问题,就得先来了解一下“八折”、“九折”表示什么意思。今天我们就一起来探究有关“打折”的知识。(板书课题:折扣)

[设计意图:采用轻松的谈话方式展开全课的教学,在平淡中显真实。利用学生在日常生活中触手可及的超市购物为例,创造教学氛围,让学生体会到数学知识来源于生活。]

二、引入新课,感情新知。

师:同学们,“打折”是什么意思?题中的“八折”、“九折”又是什么意思?

(听课件中人物对话,了解折扣的所表示的意义。)

师:小女孩和售货员阿姨的对话,你们听明白了吗?请你们也来说说看。

课件播放商场打折的有关图片,请学生说一说“七折、五折、八点八折……”分别表示什么意思?

师:现在就请同学们帮老师算一算:老师去哪家超市买牛奶更实惠?

广源超市:58×80%=46.4(元)

派拉朦超市:56×90%=50.4(元)

师问:通过刚才的计算,谁能总结“现价”、“原价”、“折数”之间有什么样的关系?(现价=原价×折数)

小结:解答这类应用题的实质就是求一个数的百分之几是多少,关键是要理解打折的含义,把折数化成百分数,再按解百分数应用题的方法解答。

[设计意图:在学生理解了折扣的含义的基础上,将学生熟悉的生活情景再次引入课堂作为教学切入点,引导学生进行知识迁移,使学生迅速进入学习状态,身临其境地去自主观察、自主分析、自主思考,在理解折扣意义的基础上体会根据原价和折数求现价的问题,实质就是求有关一个数的几分之几是多少的问题。]

三、应用拓展,深化认识。

1.情境展示:六一儿童节,儿童用品店对部分商品进行特价酬宾

书包:原价105元,打7折电动汽车:原价156元,打六折

笔袋:原价35元,打九折玩具机器人:原价220元,打四五折

篮球:打六五折,现价52元故事书:原价120元/套,现价96元/套

书包、笔袋、电动汽车的现价是多少?

2.玩具机器人比原价便宜多少钱?

3.你知道故事书打几折吗?

4.篮球的原价是多少?

学生逐一独立试算——汇报——说解题思路

[设计意图:继续创设情境,利用题与题之间的差异,让学生联系“求一个数在百分之几是多少”的知识,学会自主寻求解决“求比原价便宜多少”、“求折数”和“求原价”的方法。培养学生的解题能力,训练学生的发散思维、逆向思维。]

综合应用,拓展新知。

师:商家们为了招揽顾客,经常利用“打折”来促销商品,其实商家们还有很多不同促销手段。请看下面这道数学题

学校要订购100本科普读物。每本原价:3元。现有三家书店,优惠方式各不相同。

A书店:全部九折

B书店:40本为一套,优惠价100元/套,不足一套的按原价

C书店:买四送一

同学们,想一想,怎样才能花最少的钱购买到这100本科普读物呢?

学生以小组合作的方式共同讨论,讨论后进行汇报。

[设计意图:围绕本课教学目标,设计具有开放性的习题,采用小组合作的形式,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养学生自觉应用数学的意识。]

四、课堂总结。

师:同学们,通过这节课的学习,你们有什么收获?

师:今天大家的表现都很出色。其实在生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家都能做个有心人!

板书设计:

折扣(打折)

六折=60%5.5折=55%七折=70%六五折=65%

现价=原价×折数广源超市:58×80%=46.4(元)

派拉朦超市:56×90%=50.4(元)

原价=现价÷折数

折数=现价÷原价

2025年数学六年级教案篇9

教学目标:

1、通过选择生活中有趣而美丽的图案,供学生欣赏,培养学生的审美意识、认识数学的美、体会图形世界的神奇。

2、引导学生尝试绘制美丽的图案等操作活动,使学生获得研究图形的经验。体验学习数学的乐趣,激发学生学习数学的兴趣

教学重、难点:

1、欣赏生活中美丽的图案,培养审美意识;

2、绘制美丽图案的方法。

教具、学具准备:

1、三角尺、直尺、彩笔、圆规、硬纸板、剪刀、图钉、胶带。

教学过程

一、创设情境

1、欣赏生活中美丽的图案:播放视频或(图案图片)——(包装盒上的图案、门上的图案、建筑物上的造型图案、商标图案、……等)

2、你看到的这些生活中的美丽图案,你想说什么?

6、在你的周围你还见到了哪些有趣的图案?

7、揭示课题:今天,我们来欣赏和制作美丽的图案。

二、欣赏美丽的图案:

1、课件展示教材中的图案(也可以选择一些其他的图案)。让学生观察后说一说这些图案是如何得到的,是由哪个基本图形通过怎样的变换方式得到的?

P39(图1、2、3)

7、小组内进行交流.

8、小组代表汇报研究结果。(汇报你发现的这些图案分别是由哪个基本图形变换过来的?通过怎样的操作得来的?)

9、多媒体动画演示图案形成的过程.

10、教师小结。其实很多美丽的图案都是由基本的图形通过变换而来的,只要我们细心观察,就可以找到其规律。

三、绘制美丽的图案。

1、小组内讨论下面美丽图案是由哪个基本的图形通过怎样的变换而来的?绘制的步骤应该是什么?

要绘制的图案:

P39(图4)

2、组长汇报交流的结果。

3、多媒体再次演示绘制的步骤,并阅读课本上绘制的方法;

绘制的步骤:

P39(图5)

8、讨论绘制时应该注意的问题。

9、操作活动:开始绘制图案活动,播放轻松音乐,教师巡回参与指导。

四、作品展示和评价

1、作品展示:把学生画的图案全部张贴在教室的四周,全体学生下座位参观作品。

2、学生评价:

①、选对你印象最深的作品进行评价(可以是画得好的,也可以是画得不好的)。比一比看谁评价得好。

②、教师系统评价:

A、学生表现

B、作品优点、缺点

C、需要改进的地方

D、提出希望

五、课堂小结:

3、同学们,这节课你们互相学习、互相合作,又学到了不少的知识,给大家说一说这节课你又学到了哪些知识?有什么感想?

4、教师激励学生,提出希望。

六、课外拓展:

观察生活中还有哪些美丽的图案?请从中选出一个你感兴趣的画下来。

2025年数学六年级教案篇10

教学目标:

1、通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

2、结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

教学重点:

理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:

理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学过程:

一、游戏引入

出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗?

5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

二、探索新知

1、教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

教师:谁来说一说结果?

教师根据学生回答在黑板上画图表示两种结果

教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?

教师:这句话里“总有”是什么意思?

教师:这句话里“至少有2支”是什么意思?

(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。

教师:谁来说一说结果?

(教师根据学生回答在黑板上画图表示四种结果)

引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。

假设法(反证法)

教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

学生进行组内交流,再汇报,教师进行总结

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。

教师:把5支铅笔放到4个铅笔盒里呢?

引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。

教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?

引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。

教师:上面各个问题,我们都采用了什么方法?

引导学生通过观察比较得出“平均分”的方法。

(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?

引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。

【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。

(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。

5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2、教学例2。

(1)课件出示例2。

把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

先小组讨论,再汇报。

引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”

(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?

教师根据学生的回答总结

7÷3=2……1不管怎么放,总有一个抽屉里至少放进3本;

8÷3=2……2不管怎么放,总有一个抽屉里至少放进3本;

10÷3=3……1不管怎么放,总有一个抽屉里至少放进4本;

11÷3=3……2不管怎么放,总有一个抽屉里至少放进4本;

16÷3=5……1不管怎么放,总有一个抽屉里至少放进6本。

教师:观察上述算式和结论,你发现了什么?

引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。

三、巩固练习

1、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

2、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

四、课堂小结

教师:通过这节课的学习,你有哪些新的收获呢?

我们学会了简单的鸽巢问题。

可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。

2025年数学六年级教案篇11

教学内容:教科书第1—2页及“做一做”中的题目,练习一的第1、2题。

教学目的:使学生了解有关利息的初步知识,知道“本金”、“利息”、“利率”的含意,会利用利息的计算公式进行一些有关利息的简单计算。

教具准备:将例题写在小黑板上,活期储蓄、定期储蓄的存款凭条和取款凭条。

教学过程:

一、导入

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课

出示例题:小丽1998年1月1日把100元钱存入银行,存定期一年。到1999年1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期—年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。1997年10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

“二年应得利息多少元?”学生口述,教师接着板书:×2

小丽的存款到期时可以得到的利息是35.64元。

“想一想,存款的利息应该怎样计算呢?”先让学生说一说,教师再板书:利息=本金×利率×时间

“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习

做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

订正练习一的第2题时,可以先让学生说一说:活期储蓄每月的利率是0。1425%,表示什么意思?再引导学生分步说出:280元每月可得利息多少元?6个月的利息是多少元?本金和利息一共多少元?

四、作业

练习一的第1题。

2025年数学六年级教案篇12

教学要求:

1.使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。

2.进一步培养学生观察、分析的能力。

3.通过制统计表,培养学生认真、仔细的良好习惯。

教学过程:

1.讲述练习内容

上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。

2.复习

让学生观察教材52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答)

制复式统计表的步骤:

(1)设计“表头”

(2)定纵横栏目各需几格

(3)画表

(4)填写数据(包括总计、合计)

(5)写上名称、制表日期

3.巩固练习

在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。

方法:指导做题,让学生研究后再制表

(1)提问:“各年级”和“全年级”各表示什么意思?

(2)教师巡视指导,然后让学生结合题目说一说制表的步骤。

4.综合练习

(1)完成教材练习十一第5题。

方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。

(2)完成教材练习十一第4题。

方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。

5.深化练习

练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。

教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。

6.全课总结

有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要,同学们一定要牢牢记住。

7.作业(补充)

2025年数学六年级教案篇13

学习内容:完成课本第2~3页练习一第4至8题。

课堂目标:

1.帮助学生在不同的问题情境中巩固解决“求一个数比另一个数多(少)百分之几”问题的思考方法。

2.进一步明晰“求一个数比另一个数多(少)百分之几”与“求一个数是另一个数的百分之几”这两类问题的联系与区别,加深对解决相关问题的基本方法的思考。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习引入。

如何解决“求一个数比另一个数多(少)百分之几”的实际问题。你是怎样解决的?还有别的方法吗?

二、完成练习一第4~8题

1.完成第4题。

学生读题后独立解决。

交流,说说你是怎样解答的?解答第(2)题时还有别的方法吗?

比较这两题有什么不同?

2.完成第5题。

先让学生独立解答,然后组织交流和比较。

重点把第(2)、(3)题与第(1)题比较。

3.完成第6题。

指名学生读题,理解什么是“孵化期”。然后学生独立解答。交流检查正确率,帮助有困难的学生理解。

4.完成第7题。

学生读题,说说你是怎样理解的?

明确:“巧克力的价钱比奶糖贵百分之几”,就是“巧克力的价钱比奶糖多百分之几。”

学生解答后交流思考过程。

5.完成第8题。

学生独立解答。可以用计算器计算。完成后交流。

三、读读“你知道吗”

学生自主阅读。

交流:读完后你有什么想法?

思考:为什么不可以说2006年我国的国内生产总值增长幅度比2005年提高了0.3%?

突出单位1不同的两个百分数不能直接相减。

你还能举些有关百分点和负增长的例子吗?

四、拓展练习

1.甲数与乙数的比是4:5,乙数是甲数的()%,甲数比乙数少()%。

2.一个长方形的长和宽各增加10%,面积增加()%。

3.一辆汽车,从甲地去乙地行驶了10小时,从乙地回甲地行驶了8小时。回来时比去时所用时间缩短了百分之几?速度提高了百分之几?

4.某小学六年级有四个班,由王、陈两位老师任教,这四个班的人数分别是:一班60人,二班40人,三班50人,四班50人。期末考试及格率的情况统计是:一班的及格率是95%,二班的及格率是85%(这两个班由王老师任教);三班的及格率是96%,四班的及格率是86%(这两个班由陈老师任教)。那么,这两位老师谁教的学生及格率更高一些呢?

五、全课小结

对自己本节课的学习情况进行评价:通过本节课的学习你有什么收获?课堂上你的练习情况如何?正确率高吗?

六、练习作业

1、作业:补充习题第2页

2025年数学六年级教案篇14

教学目标

1.使学生初步学会制作一些含有百分数的简单的统计表.

2.通过看表,会回答一些简单的问题.

教学重点

在已学过统计表的形式和制法的基础上,会制作含有百分数的统计表.

教学难点

掌握统计表中数量之间的百分比关系,会分析含有百分比的统计表。

教学步骤

一、铺垫孕伏

1.复习旧知.

我们已经学过,把调查收集到的数据,加以分类整理,请看下面表格(下表),你能说出每个数据分别表示什么吗?

2.计算.

教师提问:表格中“合计”的数据怎样算?

3.引新.

统计表不仅反映某一类事物的具体数据,而且还能说明有关数据之间的关系,如表中合计的数据表示了三年同类项目收入的总和,现在的表格,还能反映出村办企业收入占全村的总收入的百分比吗?(不能)

下面我们就继续学习百分数在统计中的应用.

二、探求新知

(一)教学例题.

1.出示例题.

下面是1998~2000年东山村每年的总收入与村办企业收入的统计表.如果要使这个统计表表示出这三个年度中村办企业收入占全村总收入的白分之几,应该怎样做?

教师提问:例题向我们提出了什么问题?

2.增加栏目,扩展统计表含量.

教师提问:

(1)计算每个年度村办企业收入占全村总收入的百分比比较容易,计算出的三个百分数写在表格的什么位置?

(表格右侧旁边)

(2)能不能把表格向右侧扩充一下,把有关百分数的数据也纳入表中?

(学生扩充表格,并计算百分数,填入表内.)

(3)我们再纵向观察,这组百分数表示什么?

(村办企业收入占总收入的百分比)

(4)你们能概括地讲一讲我们是怎么做的?

(把原来的统计表右边增加一栏,再把每一年村办企业收入占全村总收入的百分数填写过去,这样就成了含有百分数的统计表.)

3.强调“合计”中“百分数”的计算方法.

教师提问:我们以后在计算统计表中百分数时,如果没有特殊要求,一般百分号前的数只需取一位小数.“合计”项目中的百分数如何计算?

学生回答:用村办企业三年收入总和去除三年全村总收入的总和,三年“合计”项目的百分数不是三年中每年的百分数的和,也不是三年中每年的百分数的平均数.

4.看统计表回答问题.

(1)2000年全村总收入比1999年增加_________万元;

(2)2000年村办企业收入比1999年增加_________万元;

(3)2000年该村其他收入(包括粮食、副业等)比1999年增加_________万元;

(4)2000年村办企业收入占全村总收入的_________%.

教师提问:

(1)通过看表回答问题,你发现全村总收入和村办企业总收入是怎样逐年变化的?(逐年增长)

(2)其中村办企业收入增长幅度怎样?

(很大)

教师讲述:仅通过1998-2000年三年的收入,我们不难看出,坚持改革开放,农村的发展非常迅速,特别是村办企业收入增长幅度之大,说明要加快农村现代化建设步伐,不仅要抓好农业,还要大力发展村办企业.

(二)反馈练习

某洗衣机厂第一季度生产洗衣机情况如下.分别算出每个月完成计划的百分数,并制成统计表.

三、全课小结

这节课我们在原来有关统计表知识的基础上,又进一步学习了百分数在统计中的应用,这就使统计表中反映数据之间关系的内容更充分,更丰富.

四、课堂练习

1.陈庄三户农民1999年和2000年平均每人纯收入的情况如下:

陈志刚1999年2186元,2000年2274元;

李卫民1999年2140元,2000年2261元;

陈世昌1999年2205元,2000年2313元;

完成下面的统计表.(百分号前面的数保留一位小数.)

五、布置作业

1.完成下面的统计表.(百分号前面的数保留一位小数.)

六、板书设计

2025年数学六年级教案篇15

教学目标:

知识与技能:通过学生熟悉的生活情境,学生会用线段图来表示植树问题中的三种植树情况,培养学生分析问题的能力。

过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。

情感、态度与价值观:培养学生认真审题的良好学习习惯。

教学重点:能理解间隔数与棵数之间的关系并应用到生活中去。

教学难点:理解间隔数与棵数之间的规律(总长÷间距=间隔数+1=植树棵数),并能运用规律解决问题。

教学方法:自主探索、合作交流。

教学准备:多媒体。

教学过程

一、情境导入

1.出示:公路两旁的树。

师:为什么要在公路的两旁栽上树呢?学生自由发言。

教师讲解:树木能够涵养水分减少水分的流失,还能净化空气,因此植树造林有助于环境的改善。(渗透植树造林的环保意识。)

2.揭题:今天我们就来研究有关植树的问题。(板书课题:植树问题)

二、互动新授

(一)提出问题——两端都栽、两端不栽。

1.出示教材第106页例1:同学们在全长100米的小路一边植树,每隔5柒栽一棵树(两端都栽)。一共需要多少棵小树?

2.出示教材第107页例2:大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3米。一共要栽多少棵树?

引导:请同学们先在纸上用线段图画一画你的种法.再在小组中交流、讨论。

3.(出示线段图)问题分析:

两端都栽:

两端不栽:

(二)棵数与间隔数之间的关系。(找规律)

提问:刚才同学们用线段图表示了两种植树情况,现在同学们能否用算式来表示这两种植树情况呢?

1.两端都栽:(教学例1)

假设小路长20米,那么可以栽几棵?

用画线段图表示:5m

则20÷5=4,要栽5棵。

由此可知:lOO÷5=20(个),那么这里的20就是棵数了吗?应该是什么?

学生回答:不是,是间隔数,应该是20+1=21(棵)。

教师板书:关系:间隔数+1=棵数

追问:为什么这里的20是间隔数,而不是棵数?

学生回答,分析原因:100÷5=20只是求100米里面有多少个5米,所以20是间隔数而不是棵树。并得出公式:路长÷间距=间隔数(不是棵数,跟棵数没关系。)

2.两端不栽:(教学例2)

假设两馆间相距30米,小树之间的距离为5米,则30÷5=6(个),6-1=5(棵)

用画线段图表示:5m

由此可知:60÷3=20(个),20-1=19(棵)

教师板书:关系:间隔数-1=棵数

3.一端不栽:(教学例3)

出示教材第108页例3:张伯伯准备在圆形池塘周围栽树。池塘周长是120m,如果每隔lOm栽l棵,一共要栽多少棵树?

假设池塘的周长是60米,每隔10米栽1棵,则60÷10=6(棵)

用画线段表示:由此可知:120÷1=12(棵)

教师板书:关系:间隔数=棵树

4.问题归类。

提问:刚才我们解决了植树时的问题,其实在日常生活中还有很多地方也有这样类似的情况,谁知道哪里还有这样的情况?

学生说,教师小结。

5.应用知识

⑴完成教材第107页“做一做”第1题。先让学生分组讨论,然后再说一说。

⑵完成教材第107页“做一做”第2题。先把题目的要求读一读,然后同桌互说,再指名学生说一说。

⑶完成教材第108页“做一做”。先让学生分析一下这个问题是不是“植树问题”,再在小组内讨论交流。

三、巩固练习

1.教材第109页练习二十四第3题。

(1)出示第3题。

指名一名学生朗读题目,理解题意。

(2)提问:从题目中你能得到什么信息?这种架设电线杆的问题应该怎么计算?

(3)学生讨论后交流。

(4)组织学生独立列式解答,并相互订正。

2.教材第111页练习二十四第13题。

(1)出示题目。

(2)提问:从题目中你能得到什么信息?这跟前一个练习题有什么不同,你又要如何计算?

(3)学生讨论后交流,指名学生板演,其余学生独立列式解答,然后集体订正。

3.教材第109页练习二十四第6题。组织学生读题并归纳有效信息,讨论这道题属于植树问题的哪种情况,并列式算出答案。

4.教材第111页练习二十四第14-、15-题。

(1)出示题目。引导观察,理解题意。

(2)学生先独立解题,然后小组讨论交流。

(3)教师组织汇报交流。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

作业:教材练习二十四剩余题。(课内时间不够,可在课外完成)

板书设计:

植树问题

两端都栽两端不栽一端不栽

间隔数+1=棵数间隔数-1=棵数间隔数=棵树

62297