初三数学教案模板范文大全
编写教案的过程也是教师学习和成长的过程,有助于提高教师的专业水平。这里提供优秀的初三数学教案模板范文大全,方便大家写初三数学教案模板范文大全参考。
初三数学教案模板范文大全篇1
图案设计
利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.
通过复习轴对称、平移、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.
1、设计图案.
2、如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.
一、复习引入
1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.
2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?
3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?
1.AB与CD平行且相等;
2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.
CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.
3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.
二、探索新知
请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.
例1 (学生活动)学生亲自动手操作题.
按下面的步骤,请每一位同学完成一个别致的图案.
(1)准备一张正三角形纸片(课前准备)(如图a);
(2)把纸片任意撕成两部分(如图b,如图c);
(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;
(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);
(5)把如图(d)平移到如图(c)的右边,得到如图(e);
(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.
老师必要时可以给予一定的指导.
三、课堂小结
本节课应掌握:
利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.
初三数学教案模板范文大全篇2
教材分析
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为平面直角坐标系的学习做好准备。
学情分析
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点
重点:方位角的判别与应用
难点:方位角的画法及变式题
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)
教学环节教师活动预设学生行为设计意图
一、创设情境,导入新课
二、讲授新课
三、巩固练习
四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法
3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题
生观察图并理解老师的讲解。
生观察并独立完成书中的例题
生先独立思考然后与同学合作完成。激发学生的学习兴趣
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法
进一步掌握方位角的有关知识,达到知识提升。
板书设计
4.3.3余角和补角(二)——方位角
学生学习活动评价设计
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后平面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。
初三数学教案模板范文大全篇3
教材分析
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。
学情分析
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点
重点:方位角的判别与应用
难点:方位角的画法及变式题
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)
教学环节教师活动预设学生行为设计意图
一、创设情境,导入新课
二、讲授新课
三、巩固练习
四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法
3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题
生观察图并理解老师的讲解。
生观察并独立完成书中的例题
生先独立思考然后与同学合作完成。激发学生的学习兴趣
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法
进一步掌握方位角的有关知识,达到知识提升。
板书设计
4.3.3余角和补角(二)——方位角
学生学习活动评价设计
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。
初三数学教案模板范文大全篇4
21.2.1配方法(3课时)
第1课时直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.
五、作业布置
教材第16页复习巩固1.第2课时配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1用配方法解下列关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
教材第17页复习巩固2,3.(1)(2).第3课时配方法的灵活运用
初三数学教案模板范文大全篇5
一、概念:三、例1----------四、特殊角的正余弦值
-------------------------------------------------------
二、范围:------------------五、例2------------
正弦和余弦(三)
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.
(三)德育渗透点
培养学生独立思考、勇于创新的精神.
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.
三、教学步骤
(一)明确目标
1.复习提问
(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.
(二)、整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦.
(2)把sin(90°-A)写成∠A的余弦.
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:
(2)已知sin35°=0.5736,则cos______=0.5736.
(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.
为了配合例3的教学,教材中配备了练习题2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.
四、布置作业
教材习题14.1A组4、5.
五、板书设计
初三数学教案模板范文大全篇6
教材分析
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。
教学目标
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点
重点:利用增长率问题中的数量关系,列出方程解决问题。
难点:理清增长率问题中的数量关系。
初三数学教案模板范文大全篇7
教学目标
1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;
2、培养学生从形象思维向抽象思维的过渡;
3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。
重点、难点
1、重点:对圆点的.轨迹的认识。
2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。
教学活动设计(在老师与学生的交流对话中完成教学目标)
(一)创设学习情境
1、对“圆”的形成观察——理解——引出轨迹的概念
(使学生在老师的引导下从感性知识到理性知识)
观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)
理解:圆上的点具有两个性质:
(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2)到定点距离等于定长的的点都在圆上;(结合下图)
引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)
上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.
轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)
(二)类比、研究1
(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)
轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;
轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;
(三)巩固概念
练习:画图说明满足下列条件的点的轨迹:
(1)到定点A的距离等于3cm的点的轨迹;
(2)到∠AOC的两边距离相等的点的轨迹;
(3)经过已知点A、B的圆O,圆心O的轨迹.
(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)
(四)类比、研究2
(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)
轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;
轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.
(五)巩固训练
练习题1:画图说明满足下面条件的点的轨迹:
1.到直线l的距离等于2cm的点的轨迹;
2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.
(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)
练习题2:判断题
1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()
2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()
3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()
4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()
(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)
(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)
(六)理解、小结
(1)轨迹的定义两层意思;
(2)常见的五种轨迹。
(七)作业
教材P82习题2、6
初三数学教案模板范文大全篇8
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.教学目标
2
了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.
1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键
1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念.教学过程
一、复习引入
学生活动:列方程.问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺,?根据题意,?得________.整理、化简,得:__________.二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
2
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
2
一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
2
分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:略
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
2
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
22
分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略
三、巩固练习
教材练习1、2
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3(2)x=4(3)3x-2
2
22
5222
=0(4)x-4=(x+2)(5)ax+bx+c=0x
四、应用拓展
22
例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.
2
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.
22
证明:m-8m+17=(m-4)+1
2
∵(m-4)≥0
22
∴(m-4)+1>0,即(m-4)+1≠0
∴不论m取何值,该方程都是一元二次方程.
2
?练习:1.方程(2a—4)x—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为
一元一次方程?
/4m/-4
2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:
2
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
初三数学教案模板范文大全篇9
新的学期又开始了,我又担任九年级数学学科的教学,九年级时间非常紧张,既要完成新课程的教学又要考虑下学期对初中阶段整个数学知识的全面系统的复习。所以在注意时间的安排上,同时把握好教学进度的基础上特制定本学期的教学计划:
一、基本情况分析:
上学年学生期末考试的成绩总体来看比较好,但是优生面不广,尖子不尖。在学生所学知识的掌握程度上,良莠不齐,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对差一点的学生来说,有些基础知识还不能有效的掌握,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到很好的培养。在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,一部分学生上课能全神贯注,积极的投入到学习中去,大部分学生对数学学习好高鹜远、心浮气躁,学习态度和学习习惯还需培养。学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致志学习的习惯,主动纠正(考试、作业后)错误的习惯,有些学生不具有或不够重视,需要教师的督促才能做,陶行知说:“教育就是培养习惯”,这是本期教学中重点予以关注的。
二、指导思想:
通过九年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
三、教学内容
本学期的教学内容共五章:
第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;
第25章:解直角三角形;第26章:随机事件的概率。
四、教学重点、难点
重点:
1、要求学生掌握证明的基本要求和方法,学会推理论证;
2、探索证明的思路和方法,提倡证明的多样性。
难点:
1、引导学生探索、猜测、证明,体会证明的必要性;
2、在教学中渗透如归纳、类比、转化等数学思想。
五、在教学过程中抓住以下几个环节:
(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
(2)抓住课堂45分钟。严格按照教学计划,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。
(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
六、教学措施:
1.认真学习钻研新课标,掌握教材。
2.认真备课,争取充分掌握学生动态。
3.认真上好每一堂课。
4.落实每一堂课后辅助,查漏补缺。
5.积极与其它老师沟通,加强教研教改,提高教学水平。
6.复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
除了以上计划外,我还将预计开展培优和治跛工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力。
初三数学教案模板范文大全篇10
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1用配方法解下列关于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.
解:略.
三、巩固练习
教材第9页练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业布置
初三数学教案模板范文大全篇11
回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?
例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.
解列表.
x…-3-2-10123…
…-8-3010-3-8…
…-10-5-2-1-2-5-10…
描点、连线,画出这两个函数的图象,如图26.2.4所示.
可以看出,抛物线是由抛物线向下平移两个单位得到的.
回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.
探索如果要得到抛物线,应将抛物线作怎样的平移?
例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.
解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),
因此所求函数关系式可看作,又抛物线经过点(1,1),
所以,,
解得.
故所求函数关系式为.
回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:
开口方向对称轴顶点坐标
[当堂课内练习]
1.在同一直角坐标系中,画出下列二次函数的图象:
,,.
观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?
2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.
3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.
[本课课外作业]
A组
1.已知函数,,.
(1)分别画出它们的图象;
(2)说出各个图象的开口方向、对称轴、顶点坐标;
(3)试说出函数的图象的开口方向、对称轴、顶点坐标.
2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.
3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?
B组
4.在同一直角坐标系中与的图象的大致位置是()
5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.
初三数学教案模板范文大全篇12
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.态度、情感、价值观
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32练习1、2
四、应用拓展
例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.
证明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不论取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
初三数学教案模板范文大全篇13
【学习目标】
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
【学习过程】
一、温故知新:
(学生活动)同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
二、自主学习:
自学教材P90---P93,思考下列问题:
1、什么叫圆周角?圆周角的两个特征:。
2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、典型例题:
例1、(教材93页例2)如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
四、巩固练习:
1、(教材P93练习1)
解:
2、(教材P93练习2)
3、(教材P93练习3)
证明:
4、(教材P95习题24.1第9题)
五、总结反思:
【达标检测】
1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().
A.140°B.110°C.120°D.130°
(1)(2)(3)
2.如图2,∠1、∠2、∠3、∠4的大小关系是()
A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()
A.100°B.110°C.120°D.130°
4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________.
5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.
(4)(5)
6.(中考题)如图5,于,若,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
【拓展创新】
1.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.
3、教材P95习题24.1第12、13题。
【布置作业】
教材P95习题24.1第10、11题。
初三数学教案模板范文大全篇14
二次根式
教学目标
1、了解二次根式的概念、
2、掌握二次根式的基本性质
教学过程
一、提出问题
上一节我们学习了平方根和算术平方根的意义,引进了一个新的记号,现在请同学们思考并回答下面两个问题:
1、表示什么?
2、a需要满足什么条件?为什么?
二、合作交流,解决问题
让学生合作交流,然后回答问题(可以补充),归纳为;
1、当a是正数时,表示a的算术平方根,即正数a的两个平方根中的一个正数;
2、当a是零时,表示零,也叫零的算术平方根;
3、a≥0,因为任何一个有理数的平方都大于或等于零
三、归纳特点,引入二次根式概念
1、基本性质、
问题1 你能用一句话概括以上3个结论吗?
让一个学生回答、其他学生补充,概括为:(a≥0)表示非负数a的算术平方根,也就是说,(a≥0)是一个非负数,即≥0(a≥0)。
问题2 ()2(a≥0)等于什么?说说你的理由并举例验证。
让学生小组讨论或自主探索得出结论:()2=a(a≥0),如()2=4,()2=2等、
以上两个问题的结论就是基本性质,特别是()2=a(a≥0)可以当公式使用,直接应用于计算。反过来,把()2=a(a≥0)写成a=()2(a≥0)的形式,这说明:任何一个非负数a都可以写成一个数的平方的形式、例如:3=()2,0.3= ()2
提问:
(1)0=()2对不对?
(2)-5=()2对不对?如果不对,错在哪里?
2、二次根式概念
形如(a≥0)的式子叫做二次根式、
说明:二次根式必须具备以下特点;
(1)有二次根号;
(2)被开方数不能小于0。
让学生举出二次根式的几个例子,并判断,(a<0)、、(a<o)是不是二次根式。< p="">
四、范例
例1、要使式子有意义,字母x的取值必须满足什么条件?
提问:
若将式子改为,则字母x的取值必须满足什么条件?
五、课堂练习
Pl0页练习1、2、
六、思考提高
我们已经研究了()2(a≥0)等于a,现在研究等于什么
提问:
1、对于抽象问题的研究,常常采用什么策略?
2、在中,a的取值有没有限制?
3、取一些数值来验证。通过验证,你能发现什么规律?
因此,今后我们遇到时,可先改写成a的绝对值|a|,再按照a取正数值,0还是负数值来取值、例如当x<0时,=|4x|=-4x
4、()2与是一样的吗?说说你的理由,并与同学交流。
七、小结
1、什么叫做二次根式?你们能举出几个例子吗?
2、二次根式有哪两个形式上的特点?
3、二次根式有哪些性质?
八、作业
习题22.1第1、2、3、4题、
教学后记:
初三数学教案模板范文大全篇15
教材分析
本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学面直角坐标系的学习做好准备。
学情分析
本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。
教学目标
理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。
教学重点和难点
重点:方位角的判别与应用
难点:方位角的画法及变式题
教学过程(本文来自优秀教育资源网斐.斐.课.件.园)
教学环节教师活动预设学生行为设计意图
一、创设情境,导入新课
二、讲授新课
三、巩固练习
四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解
1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。
2.师示范方位角的画法
3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题
生观察图并理解老师的讲解。
生观察并独立完成书中的例题
生先独立思考然后与同学合作完成。激发学生的学习兴趣
通辽具体图形使学生初步认识方位角的表示方法。
使学生通辽具体操作掌握画方位角的方法
进一步掌握方位角的有关知识,达到知识提升。
板书设计
4.3.3余角和补角(二)——方位角
学生学习活动评价设计
我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。
教学反思
本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。