教案吧 > 初中教案 > 九年级教案 >

2024初三数学教案

时间: 新华 九年级教案

教案可以帮助教师更好地了解学生,从而更好地满足学生的学习需求。写好2024初三数学教案是有技巧的,接下来给大家分享2024初三数学教案,方便大家学习。

2024初三数学教案篇1

教学目标

1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

2、培养学生从形象思维向抽象思维的过渡;

3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

重点、难点

1、重点:对圆点的.轨迹的认识。

2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。

教学活动设计(在老师与学生的交流对话中完成教学目标)

(一)创设学习情境

1、对“圆”的形成观察——理解——引出轨迹的概念

(使学生在老师的引导下从感性知识到理性知识)

观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

理解:圆上的点具有两个性质:

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的的点都在圆上;(结合下图)

引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.

轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)

(二)类比、研究1

(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

(三)巩固概念

练习:画图说明满足下列条件的点的轨迹:

(1)到定点A的距离等于3cm的点的轨迹;

(2)到∠AOC的两边距离相等的点的轨迹;

(3)经过已知点A、B的圆O,圆心O的轨迹.

(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)

(四)类比、研究2

(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

(五)巩固训练

练习题1:画图说明满足下面条件的点的轨迹:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.

(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

练习题2:判断题

1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()

2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()

3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()

4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()

(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)

(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

(六)理解、小结

(1)轨迹的定义两层意思;

(2)常见的五种轨迹。

(七)作业

教材P82习题2、6

2024初三数学教案篇2

二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).

(3)掌握•=(a≥0,b≥0),=•;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1二次根式3课时

21.2二次根式的乘法3课时

21.3二次根式的加减3课时

教学活动、习题课、小结2课时

21.1二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用(a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如(a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“(a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=.

二、探索新知

很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0,有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.当x是多少时,在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.

解:由3x-1≥0,得:x≥

当x≥时,在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时,+在实数范围内有意义?

分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一个正方形的面积是5,那么它的边长是()

A.5B.C.D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时,+x2在实数范围内有意义?

3.若+有意义,则=_______.

4.使式子有意义的未知数x有()个.

A.0B.1C.2D.无数

5.已知a、b为实数,且+2=b+4,求a、b的值.

第一课时作业设计答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=.

2.依题意得:,

∴当x>-且x≠0时,+x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4

2024初三数学教案篇3

教学目标

知识与技能目标

1、构建本章的部分知识框图。

2、复习一元二次方程的概念、解法。

过程与方法

1、通过对本章方程解法的复习,进一步提高学生的运算能力。

2、在解一元二次方程的过程中体会转化等数学思想。

情感、态度与价值观

通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

教学重点

1、一元二次方程的概念

2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

教学难点

解法的灵活选择;例4和例5的解法。

教学过程

一、创设情境

导入新课

问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

二、师生互动

共同探究

1、复习概念

例1

例2

2、四种解法

(1)

解法及其关系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四种解法分别解此方程

(4)方法优选

3、方法补充

例4

4、解法纠错

例5

解关于x的方程

错误解法

正确解法

三、小结反思

提炼思想

我们有哪些收获?解方程的思想方法是什么?

四、布置作业

巩固提高

2024初三数学教案篇4

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

2024初三数学教案篇5

教学内容

24。2圆的切线(1)

教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题

通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力

教学重点 切线的识别方法

教学难点 方法的理解及实际运用

教具准备 投影仪,胶片

教学过程 教师活动学生活动

(一)复习情境导入

1、复习、回顾直线与圆的三种位置关系。

2、请学生判断直线和圆的位置关系。

学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切线的其它方法。(板书课题)抢答

学生总结判别方法

(二)

实践与探索1:圆的切线的判断方法1、由上面的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。

2、当然,我们还可以由上节课所学的用圆心到直线的距离与半径之间的关系来判断直线与圆是否相切,即:当时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线。

3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:

(1)直线经过半径的外端点;

(2)直线垂直于半径。这样我们就得到了从位置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。理解并识记圆的切线的几种方法,并比较应用。

通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。

三、课堂练习

思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?

请学生回顾作图过程,切线是如何作出来的?它满足哪些条件?引导学生总结出:①经过半径外端;②垂直于这条半径。

请学生继续思考:这两个条件缺少一个行不行?(学生画出反例图)

(图1)(图2)图(3)

图(1)中直线经过半径外端,但不与半径垂直;图(2)中直线与半径垂直,但不经过半径外端。从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线。

最后引导学生分析,方法3实际上是从前一节所讲的“圆心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。试验体会圆的位置判别方法。

理解位置判别方法的两个要素。

(四)应用与拓展例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?

例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙O的切线吗?为什么?

分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。

教师板演,给出解答过程及格式。

课堂练习:课本练习1-4先选择方法,弄清位置判别方法与数量判别方法的本质区别。

注意圆的切线的特征与识别的区别。

(四)小结与作业识别一条直线是圆的切线,有三种方法:

(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;

(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的切线,

说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过这一点的半径,证明直线垂直于半径即可(如例2)。

各抒己见,谈收获。

(五)板书设计

识别一条直线是圆的切线,有三种方法:例:

(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;

(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的切线,

说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过这一点的半径,证明直线垂直于半径

(六)教学后记

教学内容 24。2圆的切线(2)课型新授课课时执教

教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。

教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。

教学难点 三角形的内心及其半径的确定。

教具准备 投影仪,胶片

教学过程 教师活动学生活动

(一)复习导入:

请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)

你能说明以下这个问题?

如右图所示,PA是的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?

回顾旧知,看谁说的全。

利用旧知,分析解决该问题。

(二)

实践与探索问题1、从圆外一点可以作圆的几条切线?请同学们画一画。

2、请问:这一点与切点的两条线段的长度相等吗?为什么?

3、切线长的定义是什么?

通过以上几个问题的解决,使同学们得出以下的结论:

从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线

平分两条切线的夹角。在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。

(三)拓展与应用例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知,,(1)求的周长;(2)求的度数。

解:(1)连结PA、PB、EF是⊙O的切线

所以,,

所以的周长(2)因为PA、PB、EF是⊙O的切线

所以,,,

所以

所以

画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。

(四)小结与作业谈一下本节课的收获?各抒己见,看谁说得最好

(五)板书设计

切线(2)

切线长相等例:

切线长性质

点与圆心连线平分两切线夹角

(六)教学后记

2024初三数学教案篇6

1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.

2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.

3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

利用一元二次方程解决传播问题、百分率问题.

难点

如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.

一、引入新课

1.列方程解应用题的基本步骤有哪些?应注意什么?

2.科学家在细胞研究过程中发现:

(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?

(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?

(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?

二、教学活动

活动1:自学教材第19页探究1,思考教师所提问题.

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.

(2)本题中有哪些数量关系?

(3)如何利用已知的数量关系选取未知数并列出方程?

解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合题意舍去)

因此每轮传染中平均一个人传染了10个人.

变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?

活动2:自学教材第19页~第20页探究2,思考老师所提问题.

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

(1)如何理解年平均下降额与年平均下降率?它们相等吗?

(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.

(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);

二月(或二年)后产量为a(1±x)2;

n月(或n年)后产量为a(1±x)n;

如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.

(4)对甲种药品而言根据等量关系列方程为:________________.

三、课堂小结与作业布置

课堂小结

1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.

2.传播问题解决的关键是传播源的确定和等量关系的建立.

3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).

4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.

作业布置

教材第21-22页习题21.3第2-7题.第2课时解决几何问题

1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.

2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.

3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.

难点

在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.

活动1创设情境

1.长方形的周长________,面积________,长方体的体积公式________.

2.如图所示:

(1)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为2cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

(2)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为xcm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

活动2自学教材第20页~第21页探究3,思考老师所提问题

要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).

(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.

(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.

(3)若设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.

(4)根据等量关系:________,可列方程为:________.

(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)

(6)思考如果设正中央矩形的长与宽分别为9xcm和7xcm,你又怎样去求上下、左右边衬的宽?

活动3变式练习

如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.

答案:路的宽度为5米.

活动4课堂小结与作业布置

课堂小结

1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.

2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.

作业布置

教材第22页习题21.3第8,10题.

2024初三数学教案篇7

教学目标

1.初步掌握用直接开平方法解一元二次方程,会用直接开平方法解形如的方程;

2.初步掌握用配方法解一元二次方程,会用配方法解数字系数的一元二次方程;

3.掌握一元二次方程的求根公式的推导,能够运用求根公式解一元二次方程;

4.会用因式分解法解某些一元二次方程。

5.通过对一元二次方程解法的教学,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。

教学重点和难点

重点:一元二次方程的四种解法。

难点:选择恰当的方法解一元二次方程。

教学建议:

一、教材分析:

1.知识结构:一元二次方程的解法

2.重点、难点分析

(1)熟练掌握开平方法解一元二次方程

用开平方法解一元二次方程,一种是直接开平方法,另一种是配方法。

如果一元二次方程的一边是未知数的平方或含有未知数的一次式的平方,另一边是一个非负数,或完全平方式,如方程,和方程就可以直接开平方法求解,在开平方时注意取正、负两个平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,转化为的形式来求解。配方时要注意把二次项系数化为1和方程两边都加上一次项系数一半的平方这两个关键步骤。

(2)熟记求根公式和公式中字母的意义在使用求根公式时要注意以下三点:

1)把方程化为一般形式,并做到、之间没有公因数,且二次项系数为正整数,这样代入公式计算较为简便。

2)把一元二次方程的各项系数、、代入公式时,注意它们的符号。

3)当时,才能求出方程的两根。

(3)抓住方程特点,选用因式分解法解一元二次方程

如果一个一元二次方程的一边是零,另一边易于分解成两个一次因式时,就可以用因式分解法求解。这时只要使每个一次因式等于零,分别解两个一元一次方程,得到两个根就是一元二次方程的解。

我们共学习了四种解一元二次方程的方法:直接开平方法;配方法;公式法和因式分解法。解方程时,要认真观察方程的特征,选用适当的方法求解。

二、教法建议

1.教学方法建议采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成,启发诱导学生深入思考问题,有利于培养学生思维灵活、严谨、深刻等良好思维品质.

2.注意培养应用意识.教学中应不失时机地使学生认识到数学源于实践并反作用于实践.

18842