教案吧 > 初中教案 > 九年级教案 >

九年级数学教案范例

时间: 新华 九年级教案

好的教案应该包括合理的教学过程,包括导入新课、讲授新课、巩固练习、课堂小结、布置作业等环节。那要怎么写九年级数学教案范例呢?这里提供一些九年级数学教案范例,希望对大家能有所帮助。

九年级数学教案范例篇1

九年级数学《折扣》教学设计

《折扣》教学设计

【教学内容分析】:本课选自我校生活数学校本教材"折扣"其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。

【学情分析】:A类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格,100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。

B类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。

【教学目标】:

知识与能力:A组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。

B组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。

过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。

情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。

【教学重点】:计算折扣后的物品价格。

【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。

【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。

【教学准备】:课件

【教学过程】:

一、复习导入

【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的物品价格做铺垫。】

3折=0.35折=0.58折=0.86折=0.6

2.5折=0.253.8折=0.387.2折=0.72

AB组学生进行折扣与小数的转换。

二、折扣的计算

【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。】

1、计算折扣

棉鞋原价:650元,现4折出售,需要多少元钱?

1折扣换算为小数:4折=0.4

2列算式:650_0.4=260(元)

2、练一练:

《百科全书》原价150元,现7折出售,需要多少元钱?

老师引导学生做练习。

预设生成:学生列算式时,容易直接列成150_7=1050(元)

解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。

3、巩固练习:

登山鞋原价480元,现7.5折出售,需要多少元?

三:折扣的比较

【设计意图:通过观察比较,和提示性的提问,让学生自己发现折扣数和价格之间的关系,并总结出折扣数越小的,价格越低,越便宜。】

课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。

羽绒服原价500元

商场一:商场二:商场三:

8折7折9折

请学生说出列式并快速计算得数。

商场一:500_0.8=400(元)

商场二:500_0.7=350(元)

商场三:500_0.9=450(元)

比较得出最便宜的商场,商场二。

1.折扣是整数的比较:

商场二打7折是最便宜的,哪个商场是最贵的呢?

商场三

那么商场三是打几折呢?

9折

比较一下折扣和最后的价格,你会发现什么呢?

结论:相同价格的物品,折扣数越小,价格越低,越便宜。

总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)

预设生成:

A组:不能发现折扣与最终价格之间的关系。

B组:计算后,学生比较不出谁更便宜。

解决措施:

A组:进一步进行提示,把问题提的更具体。

B组:教师帮助学生将数字放在一起进行比较。

2.折扣是小数的比较:

【设计意图:两个比较接近的折扣的比较,同时包括小数的比较,运用之前找到的规律找出便宜的商品。】

出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。

书包原价100元

商场一:商场二:

8折8.8折

谈话:刚刚通过比较我们知道了在原价相同的情况下,折扣数越小,价格就越低,越便宜的这个规律,那么这次有没有同学能直接告诉老师哪个商场的书包更便宜些呢?

学生回答(A组的学生会很快理解并正确比较,B组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)

验证:

商场一:100_0.8=80(元)

商场二:100_0.88=88(元)

比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请A组学生进行总结)

预设生成:

A组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。

B组:不理解规律的内容。

解决措施:

A组:老师指出黑板上总结出的规律对学生进行提示。

B组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。

3.课堂练习:

【设计意图:在课件上进行选择商品,复习本课所涉及的各种不同的折扣的比较,而且渗透选择商品的多种渠道。】

(1)不用计算,说出每组商品中,谁的价格更便宜。

课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。

2保温杯原价120元,大润发6折,沃尔玛6.6折。

3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。

(2)游戏:模拟商店

【设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】

课件出示两个商场,同时出示原价相同的几种商品,但折扣不同,发给学生"任务单",让学生实际来进行选择,选择后说一说选择谁的商品?是怎样选的?

四、拓展延伸

出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。

五、课堂小结:

这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。

板书设计:

一、折扣的计算

二、折扣的比较

4折=0.4500_0.8=400(元)

650_0.4=260(元)500_0.7=350(元)

500_0.9=4500(元)

相同价格的物品,折扣数小的,价格就低。

家庭指引:

A组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。

B组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。

九年级数学教案范例篇2

直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页 练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

九年级数学教案范例篇3

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF‖AC交BC延长线于点F

∵AD‖BC,∴四边形ACFD是平行四边形

∴AD=CF,AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB‖CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3.已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB‖DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

九年级数学教案范例篇4

各位老师,今天我说课的内容是:22.3实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

作业布置

共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

九年级数学教案范例篇5

一、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

二、教学内容:

本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。

四、教学目的:

在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。

在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。

五、教学重点、难点

本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。

六、教学措施:

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

九年级数学教案范例篇6

第1章反比例函数

1.1反比例函数

教学目标

【知识与技能】

理解反比例函数的概念,根据实际问题能列出反比例函数关系式.

【过程与方法】

经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.

【情感态度】

培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.

【教学重点】

理解反比例函数的概念,能根据已知条件写出函数解析式.

【教学难点】

能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

教学过程

一、情景导入,初步认知

1.复习小学已学过的反比例关系,例如:

(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

(2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

【教学说明】对相关知识的复习,为本节课的学习打下基础.

二、思考探究,获取新知

探究1:反比例函数的概念

(1)一群选手在进行全程为3000米的_比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.

(2)利用(1)的关系式完成下表:

(3)随着时间t的变化,平均速度v发生了怎样的变化?

(4)平均速度v是所用时间t的函数吗?为什么?

(5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

【教学说明】教师组织学生讨论,提问学生,师生互动.

三、运用新知,深化理解

1.见教材P3例题.

2.下列函数关系中,哪些是反比例函数?

(1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

(2)压强p一定时,压力F与受力面积S的关系;

(3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

(4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.

解:

(1)a=12/h,是反比例函数;

(2)F=pS,是正比例函数;

(3)F=W/s,是反比例函数;

(4)y=m/x,是反比例函数.

3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.

4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=1.98kg/m3

(1)求p与V的函数关系式,并指出自变量的取值范围.

(2)求V=9m3时,二氧化碳的密度.

解:略

5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.

四、师生互动、课堂小结

先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

课后作业

布置作业:教材“习题1.1”中第1、3、5题.

教学反思

学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

九年级数学教案范例篇7

1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.

2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.

重点

中心对称的概念及性质.

难点

中心对称性质的推导及理解.

复习引入

问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对应点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

探索新知

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形.

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.

从图(1)中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.

下面,我们就以图(2)为例来证明这两个结论.

证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

例题精讲

例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.

解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.

(2)同样画出点B和点C的对称点E和F.

(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.

例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用.

作业布置

教材第66页练习

九年级数学教案范例篇8

教学目标

(1)会用公式法解一元二次方程;

(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

(3)渗透化归思想,领悟配方法,感受数学的内在美.

教学重点

知识层面:公式的推导和用公式法解一元二次方程;

能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

教学难点:求根公式的推导.

总体设计思路:

以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

教学过程

(一)以旧引新,提出问题

解下列一元二次方程:(学生选两题做)

(1)_2+4_+2=0;(2)3_2-6_+1=0;

(3)4_2-16_+17=0;(4)3_2+4_+7=0.

然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)

(1)3_2+4_+2=0;(2)3_2-2_+1=0;

(3)4_2-16_-3=0;(4)3_2+_+7=0.

思考:新的四题与原题的解题过程会发生什么变化?

设计意图:1.复习巩固旧知识,为本节课的学习扫除障碍;

2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

(二)分析问题,探究本质

由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

进而提出下面的问题:

既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

a_2+b_+c=0(a≠0)注:根据学生学习程度的不同,可

a_2+b_=-c以采用学生独立尝试配方,合

_2+_=-作尝试配方或教师引导下进行

_2+_+=-+配方等各种教学形式.

(_+)2=

然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.

当b2-4ac≥0时,

(_+)2=注:这样变形可以避免对a正、负的讨论,

_+=便于学生的理解.

_=-即_=

_1=,_2=

当b2-4ac<0时,

方程无实数根.

设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

(三)得出结论,解决问题

由上面的探究过程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c确定.当b2-4ac≥0时,

_=;

当b2-4ac<0时,方程无实数根.

这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

设计意图:理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)

(1)2_2-_-1=0;(2)4_2-3_+2=0;

(3)_2+15_=-3_;(4)_2-_+=0.

注:(教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

用公式法解一元二次方程:(比一比,看谁做得又快又对)

(1)_2+_-6=0;(2)_2-_-=0;

(3)3_2-6_-2=0;(4)4_2-6_=0;

设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

(四)拓展运用,升华提高

[想一想]

清清和楚楚刚学了用公式法解一元二次方程,看到一个关于_的一元二次方程_2+(2m-1)_+(m-1)=0,清清说:“此方程有两个不相等的实数根”,

而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,

避免以后出现运算错误。

归纳小结,结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

(五)布置作业

一必做题

二选做题:P46第12题。

设计意图:结合学生的实际情况,可以分层布置。适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

九年级数学教案范例篇9

近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。

一、加强广大师生对数学阅读重要性的理解

数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。

二、初中数学阅读教学的教学原则

在初中数学教学中进行阅读教学,应当遵循如下的教学原则:

1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。

2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。

3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。

4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。

5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。

三、实施数学阅读教学的具体途径

1.预习的阅读指导

在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。

2.数学教材的阅读指导

(1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。

(2)阅读概念

我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。

(3)阅读代数式

大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的过程中要注意式子本身的特点及其普遍性。

(4)阅读例题

对于初中学生例题阅读的指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。

(5)阅读公式

不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。

(6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。

(7)阅读提示与说明

教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。

(8)阅读章头图和小结

章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。

3.加强课外阅读,丰富学生知识

近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。

四、数学阅读教学的价值

重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的最高水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。

九年级数学教案范例篇10

教学目标

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1.教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程的重要组成部分。方程,只有当时,才叫做一元二次方程。如果且,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程(),把它化成一般形式为,由于,所以,符合一元二次方程的定义。

(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点: 重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点:一元二次方程的含义.

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:

1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程(x(x十5)=150)

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4.一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0(a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0

(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

课外作业:略

九年级数学教案范例篇11

[本课知识要点]

会画出这类函数的图象,通过比较,了解这类函数的性质.

[MM及创新思维]

同学们还记得一次函数与的图象的关系吗?

,你能由此推测二次函数与的图象之间的关系吗?

,那么与的图象之间又有何关系?

.

[实践与探索]

例1.在同一直角坐标系中,画出函数与的图象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

九年级数学教案范例篇12

教学内容

1、本单元数学的主要内容。

(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角。

(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系。

(3)正多边形和圆。

(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积。

2、本单元在教材中的地位与作用。

学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验。本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质。通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用。本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程。

教学目标

1、知识与技能

(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理。

(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算。

(4)熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算。

2、过程与方法

(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动。了解概念,理解等量关系,掌握定理及公式。

(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流。

(3)在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想。

(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力。

(5)探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义。

3、情感、态度与价值观

经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望。

教学重点

1、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其运用。

2、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等及其运用。

3、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的&39;圆心角的一半及其运用。

4、半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其运用。

5、不在同一直线上的三个点确定一个圆。

6、直线L和⊙O相交dr及其运用。

7、圆的切线垂直于过切点的半径及其运用。

8、经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题。

9、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角及其运用。

10、两圆的位置关系:d与r1和r2之间的关系:外离d>r1+r2;外切d=r1+r2;相交│r2-r1│

11、正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目。

12、n°的圆心角所对的弧长为L=,n°的圆心角的扇形面积是S扇形=及其180360运用这两个公式进行计算。

13、圆锥的侧面积和全面积的计算。

教学难点

1、垂径定理的探索与推导及利用它解决一些实际问题。

2、弧、弦、圆心有的之间互推的有关定理的探索与推导,并运用它解决一些实际问题。

3、有关圆周角的定理的探索及推导及其它的运用。

4、点与圆的位置关系的应用。

5、三点确定一个圆的探索及应用。

6、直线和圆的位置关系的判定及其应用。

7、切线的判定定理与性质定理的运用。

8、切线长定理的探索与运用。

9、圆和圆的位置关系的判定及其运用。

10、正多边形和圆中的半径R、边心距r、中心角θ的关系的应用。

11、n的圆心角所对的弧长L=及S扇形=的公式的应用。

12、圆锥侧面展开图的理解。

教学关键

1、积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、性质、“三个”位置关系并推理证明等活动。

2、关注学生思考方式的多样化,注重学生计算能力的培养与提高。

3、在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,发展学生有条理的思考能力及语言表达能力。

单元课时划分

本单元教学时间约需13课时,具体分配如下:

24.1圆3课时

24.2与圆有关的位置关系4课时

24.3正多边形和圆1课时

24.4弧长和扇形面积2课时

教学活动、习题课、小结3课时

九年级数学教案范例篇13

(一)教材的地位和作用

《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。

(二)教学目标

1、。知识与能力:

1)进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

【教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

【教学过程】

一、知识梳理

1、判断两三角形相似有哪些方法?

1)定义:2)定理(平行法):

3)判定定理一(边边边):

4)判定定理二(边角边):

5)判定定理三(角角):

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材P49例3——测量金字塔高度问题)

《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50练习­——测量河宽问题)

《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

五、回顾小结

一)相似三角形的应用主要有如下两个方面

1测高(不能直接使用皮尺或刻度尺量的)

2测距(不能直接测量的两点间的距离)

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三)测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.210题、11题。

【教学设计说明】

相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。

九年级数学教案范例篇14

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

【知识与技能】

1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.

【教学重点】

①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.

【教学难点】

二次函数图象的性质及其探究过程和方法的体会.

九年级数学教案范例篇15

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

3.通过学生共同观察和讨论,培养大家的合作交流意识.

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

教学难点

1.探索方程与函数之间的联系的过程.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法.

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.

19531