九年级数学教案模版
好的教案应该考虑所需教具的准备,如教学用具、实验器材、多媒体设备等,以确保教学的顺利进行。小编给大家分享九年级数学教案模版参考,方便大家参考九年级数学教案模版怎么写。
九年级数学教案模版篇1
教学内容:
正多边形与圆第二课时
教学目标:
(1)理解正多边形与圆的关系;
(2)会正确画相关的正多边形
(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.
教学重点:
会正确画相关的正多边形(定圆心角与弧长)
教学难点:
会正确画相关的正多边形(定圆心角与弧长)
教学活动设计:
(一)观察、分析、归纳:实际生活中,经常会遇到画正多边形的问题,举例(见课本如画一个六角螺帽的平面图,画一个五角星等等。
观察、分析:如何等分圆周,画正多边形?
教师组织学生进行,并可以提问学生问题.
(二)回忆正多边形的概念,正确画正多边形:
(1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.
问题:正多边形与圆有什么关系呢?
发现:正三角形与正方形都有外接圆。
分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?
可得:把圆分成n(n≥3)等份:
依次连结各分点所得的多边形是这个圆的内接正n边形;
(2)以画正六边形为例:分析:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆,从而得到相应的正多边形。例如,画一个边长为2cm的正六边形时,我们可以以2cm为半径作一个⊙O,用量角器画一个等于3600/6=600的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形(如图)
对于一些特殊的正多边形,还可以用圆规和直尺来作。例如,我们可以这样来作正六边形。(见课本)等等
(三)初步应用
1.画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星。
2.用等分圆的方法画出下列图案:(见课本107页)
(四)归纳小结:
(五)作业布置;107-108
九年级数学教案模版篇2
二次函数的教学设计
教学内容:人教版九年义务教育初中第三册第108页
教学目标:
1。1。理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;
2。2。通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;
3。3。通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
教学重点:二次函数的意义;会画二次函数图象。
教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。
教学过程设计:
一创设情景、建模引入
我们已学习了正比例函数及一次函数,现在来看看下面几个例子:
1。写出圆的半径是R(CM),它的面积S(CM2)与R的关系式
答:S=πR2。①
2。写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系
答:S=L(30-L)=30L-L2②
分析:①②两个关系式中S与R、L之间是否存在函数关系?
S是否是R、L的一次函数?
由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?
答:二次函数。
这一节课我们将研究二次函数的有关知识。(板书课题)
二归纳抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),
那么,y叫做x的二次函数。
注意:(1)必须a≠0,否则就不是二次函数了。而b,c两数可以是零。(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数。
练习:1。举例子:请同学举一些二次函数的例子,全班同学判断是否正确。
2。出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。
(若学生考虑不全,教师给予补充。如:;;;的形式。)
(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)
由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。
(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)
三尝试模仿、巩固提高
让我们先从最简单的二次函数y=ax2入手展开研究
1。1。尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?
请同学们画出函数y=x2的图象。
(学生分别画图,教师巡视了解情况。)
2。2。模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。
解:一、列表:
九年级数学教案模版篇3
教学目标
知识与技能:
1、知道什么叫做解比例,会根据比例的性质正确地解比例。
2、培养学生认真书写和计算的习惯。
过程与方法:
经历解比例的过程,体验知识之间的内容在联系和广泛应用。
情感与价值观:
感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。
教学重难点
教学重点:
解比例
教学难点:
解比例的方法。
教学工具
ppt课件
教学过程
一、复习准备
1、提问
师:同学们,前面我们学习了比例,
出示:1、什么叫做比例?2、比例的基本性质是什么?
(分别指名学生回答)
2、想一想
出示比例:3:2=():10
师:你能利用比例的知识说一说括号里应填几?为什么?
生:可以根据比例的意义3:2=1.5,想():10=1.5(15比10等于1.5);还可以根据比例的基本性质,两个外项的积等于30,想()×2=30(15乘以2等于30)。
师:你能快速地说出这个括号里应填几吗?
出示比例:():0.5=8:2
师:仔细观察这两个比例,其中几项是已知的?(三项)另一个项是未知的,我们把它叫做(未知项),一般用x表示。根据什么就可以求出这个未知项?(比例的基本性质)
像这样,求比例中的未知项,叫做解比例。(课件出示)。
今天这节课我们就来学习解比例。(板书课题,学生齐读)
二、探索新知
1、出示埃菲尔铁塔情境图。
师:解比例在我们生活中的应用是十分广泛的,同学们,请看:
这是法国巴黎最有名的塔叫埃菲尔铁塔,高度约320米。我国北京世界公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。
2、出示例题,教学例2。
指名学生读题。
师:从这道题中你能得到哪些数学信息?(指名学生回答)
问:1:10是谁与谁的比?你又能写出怎样的数量关系式?
学生回答后,课件出示:模型的高度:铁塔的高度=1:10。
师:在这个关系式中,谁还是已知的?
(埃菲尔铁塔的高度是320米。)
师:在这个关系式中,我们知道其中的(三项),另一个项不知道,可以设为x,(课件出示)这样就可以写出一个比例,谁来说说看?
课件出示:X:320=1:10
师:怎样解这个比例呢?
引导学生讨论后回答:应用比例的基本性质,把比例写成方程。
师:同学们会解方程吗?试着把这个方程解出来。
学生投影展示解比例过程,师适时讲解强调。
师:我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是否相等.)或用比例的基本性质(看看两个外项的积和两个内项的积是否相等来检验。
师:解比例在生活中的应用十分广泛,我们来总结一下解决这类问题的一般步骤:(先根据问题设X——再根据数量关系列出比例式——然后根据比例的基本性质把比例转化为方程——解方程)最后别忘了检验噢!(课件出示)。
师:现在同学们会用解比例的方法来解决问题了吗?
3、教学例3
师:这个比例你会解吗?出示例3
师:它与例2有什么不同?(这个比例是分数形式)应该怎样解呢?同桌先说一说,然后指名学生说一说你是怎样解这个比例的。(可以根据比例的基本性质---交叉相乘的积相等把比例转化成方程,然后解方程求出未知数X)
师:想一想括号里应填什么?
师:回顾一下我们是怎样解比例的?
学生说完课件出示,强调最后别忘了检验。
三、巩固练习
1、课件出示4道解比例,学生独立完成,投影展示。
2、解决问题:教材“做一做”第2题。(学生分析后指名学生板演,其他练习本上独立完成,然后集体订正)
3.你知道吗?
侦探柯南之神秘脚印
四、布置作业
课下,和小组成员想办法测量出我们学校旗杆的高度!
五、课堂总结
通过这节课的学习,你有那些新的收获?
学生畅所欲言。(什么叫解比例?怎样解比例?)
板书
解比例
求比例中的未知项,叫做解比例。
九年级数学教案模版篇4
第1课时解决代数问题
1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.
2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.
3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
利用一元二次方程解决传播问题、百分率问题.
难点
如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.
一、引入新课
1.列方程解应用题的基本步骤有哪些?应注意什么?
2.科学家在细胞研究过程中发现:
(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?
(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?
(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?
二、教学活动
活动1:自学教材第19页探究1,思考教师所提问题.
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.
(2)本题中有哪些数量关系?
(3)如何利用已知的数量关系选取未知数并列出方程?
解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?
活动2:自学教材第19页~第20页探究2,思考老师所提问题.
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(1)如何理解年平均下降额与年平均下降率?它们相等吗?
(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.
(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);
二月(或二年)后产量为a(1±x)2;
n月(或n年)后产量为a(1±x)n;
如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.
(4)对甲种药品而言根据等量关系列方程为:________________.
三、课堂小结与作业布置
课堂小结
1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.
2.传播问题解决的关键是传播源的确定和等量关系的建立.
3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.
作业布置
教材第21-22页习题21.3第2-7题.第2课时解决几何问题
1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.
2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.
3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.
难点
在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.
活动1创设情境
1.长方形的周长________,面积________,长方体的体积公式________.
2.如图所示:
(1)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为2cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
(2)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为xcm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
活动2自学教材第20页~第21页探究3,思考老师所提问题
要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).
(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.
(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.
(3)若设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.
(4)根据等量关系:________,可列方程为:________.
(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)
(6)思考如果设正中央矩形的长与宽分别为9xcm和7xcm,你又怎样去求上下、左右边衬的宽?
活动3变式练习
如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.
答案:路的宽度为5米.
活动4课堂小结与作业布置
课堂小结
1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.
2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.
作业布置
教材第22页习题21.3第8,10题.
九年级数学教案模版篇5
一、教学目标
1.知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2.过程与方法
通过猜想、探讨构建一元二次方程模型.
3.情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风.
二、教学重点难点
1.重点
找出问题中的数量关系;
2.难点
找等量关系并列出相应方程.
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型.
四、教学过程与互动设计
(一)温故知新
1.请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称.)
2.解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样.
我们先来解一些具体的题目,然后总结一些规律或应注意事项.
(二)创设情景,导入新课
1.一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程.
【答案】
①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际.
2.【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍.
解:设平均降价百分率为x,根据题意,得56(1-x)2=31.5
解这个方程,得x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%.
【跟踪练习】
某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%).
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性.
(三)应用迁移,巩固提高
1.某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
A)200(1+a%)2=148(B)200(1-a%)2=148
(C)200(1-2a%)=148(D)200(1-a2%)=148
2.为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
A、100(1+x)2=800B、100+100×2x=800C、100+100×3x=800D、100[1+(1+x)+(1+x)2]=800
2.某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程.,一元二次方程的.解法
3.某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4.某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5.某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
九年级数学教案模版篇6
(一)教材的地位和作用
《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。
(二)教学目标
1、。知识与能力:
1)进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教法与学法】
(一)教法分析
为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:
1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。
2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。
3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。
(二)学法分析
按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。
【教学过程】
一、知识梳理
1、判断两三角形相似有哪些方法?
1)定义:2)定理(平行法):
3)判定定理一(边边边):
4)判定定理二(边角边):
5)判定定理三(角角):
2、相似三角形有什么性质?
对应角相等,对应边的比相等
(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)
二、情境导入
胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。
古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?
(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)
三、例题讲解
例1(教材P49例3——测量金字塔高度问题)
《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:略(见教材P49)
问:你还可以用什么方法来测量金字塔的高度?(如用身高等)
解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)
例2(教材P50练习——测量河宽问题)
《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计.再解x的方程可求出河宽.
解:略(见教材P50)
问:你还可以用什么方法来测量河的宽度?
解法二:如图构造相似三角形(解法略).
四、巩固练习
1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?
五、回顾小结
一)相似三角形的应用主要有如下两个方面
1测高(不能直接使用皮尺或刻度尺量的)
2测距(不能直接测量的两点间的距离)
二)测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决
三)测距的方法
测量不能到达两点间的距离,常构造相似三角形求解
(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)
六、拓展提高
怎样利用相似三角形的有关知识测量旗杆的高度?
七、作业
课本习题27.210题、11题。
【教学设计说明】
相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。
九年级数学教案模版篇7
教学目标
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点
教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具
ppt课件
教学过程
一、复习导入
1、我们已经认识了比例,谁能说一下什么叫比例?
2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:40
3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质
二、探究新知
1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2.4:1.6=60:40外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、(1)教师:比例有什么性质呢?现在我们就来研究。(板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96(2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40(=)这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线)(6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc
以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。
三、拓展应用
1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6:3和8:5(2)0.2:2.5和4:50
2.根据比例的基本性质在括号里填上合适的数。
8:2=24:()():15=4:5
3.猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?
24:()=():2
4.运用比例的基本性质判断下面两个比能不能组成比例。
1/3:1/6和1/2:1/41.2:3/4和4/5:5
四、拓展
已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。
五、总结
1、通过这节课,我们学到了什么知识?
2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。
六、作业布置
课本43页练习八第5、7题。
板书
比例的基本性质
例1、2.4:1.6=60:40
两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
2.4:1.6=60:40
九年级数学教案模版篇8
1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.
2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.
重点
中心对称的概念及性质.
难点
中心对称性质的推导及理解.
复习引入
问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:
1.以O为旋转中心,旋转180°后两个图形是否重合?
2.各对应点绕O旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
探索新知
(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:
(1)作△ABC一顶点为对称中心的对称图形;
(2)作关于一定点O为对称中心的对称图形.
第一步,画出△ABC.
第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.
从图(1)中可以得出△ABC与△A′B′C是全等三角形;
分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.
下面,我们就以图(2)为例来证明这两个结论.
证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;
(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.
同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.
因此,我们就得到
1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
2.关于中心对称的两个图形是全等图形.
例题精讲
例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.
分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.
解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.
(2)同样画出点B和点C的对称点E和F.
(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.
例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).
课堂小结(学生总结,老师点评)
本节课应掌握:
中心对称的两条基本性质:
1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;
2.关于中心对称的两个图形是全等图形及其它们的应用.
作业布置
教材第66页练习
九年级数学教案模版篇9
【教学内容分析】:本课选自我校生活数学校本教材“折扣”其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。
【学情分析】:a类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格,100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。
b类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。
【教学目标】:
知识与能力:a组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。
b组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。
过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。
情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。
【教学重点】:计算折扣后的物品价格。
【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。
【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。
【教学准备】:课件
【教学过程】:
一、复习导入
【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的。物品价格做铺垫。】
3折=0.35折=0.58折=0.86折=0.6
2.5折=0.253.8折=0.387.2折=0.72
ab组学生进行折扣与小数的转换。
二、折扣的计算
【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。】
1、计算折扣
棉鞋原价:650元,现4折出售,需要多少元钱?
1折扣换算为小数:4折=0.4
2列算式:650×0.4=260(元)
2、练一练:
《百科全书》原价150元,现7折出售,需要多少元钱?
老师引导学生做练习。
预设生成:学生列算式时,容易直接列成150×7=1050(元)
解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。
3、巩固练习:
登山鞋原价480元,现7.5折出售,需要多少元?
三:折扣的比较
【设计意图:通过观察比较,和提示性的提问,让学生自己发现折扣数和价格之间的关系,并总结出折扣数越小的,价格越低,越便宜。】
课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。
羽绒服原价500元
商场一:商场二:商场三:
8折7折9折
请学生说出列式并快速计算得数。
商场一:500×0.8=400(元)
商场二:500×0.7=350(元)
商场三:500×0.9=450(元)
比较得出最便宜的商场,商场二。
1、折扣是整数的比较:
商场二打7折是最便宜的,哪个商场是最贵的呢?
商场三
那么商场三是打几折呢?
9折
比较一下折扣和最后的价格,你会发现什么呢?
结论:相同价格的物品,折扣数越小,价格越低,越便宜。
总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)
预设生成:
a组:不能发现折扣与最终价格之间的关系。
b组:计算后,学生比较不出谁更便宜。
解决措施:
a组:进一步进行提示,把问题提的更具体。
b组:教师帮助学生将数字放在一起进行比较。
2、折扣是小数的比较:
【设计意图:两个比较接近的折扣的比较,同时包括小数的比较,运用之前找到的规律找出便宜的商品。】
出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。
书包原价100元
商场一:商场二:
8折8.8折
谈话:刚刚通过比较我们知道了在原价相同的情况下,折扣数越小,价格就越低,越便宜的这个规律,那么这次有没有同学能直接告诉老师哪个商场的书包更便宜些呢?
学生回答(a组的学生会很快理解并正确比较,b组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)
验证:
商场一:100×0.8=80(元)
商场二:100×0.88=88(元)
比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请a组学生进行总结)
预设生成:
a组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。
b组:不理解规律的内容。
解决措施:
a组:老师指出黑板上总结出的规律对学生进行提示。
b组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。
3、课堂练习:
【设计意图:在课件上进行选择商品,复习本课所涉及的各种不同的折扣的比较,而且渗透选择商品的多种渠道。】
(1)不用计算,说出每组商品中,谁的价格更便宜。
课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。
2保温杯原价120元,大润发6折,沃尔玛6.6折。
3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。
(2)游戏:模拟商店
【设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】
课件出示两个商场,同时出示原价相同的几种商品,但折扣不同,发给学生“任务单”,让学生实际来进行选择,选择后说一说选择谁的商品?是怎样选的?
四、拓展延伸
出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。
五、课堂小结:
这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。
板书设计:
一、折扣的计算二、折扣的比较
4折=0.4500×0.8=400(元)
650×0.4=260(元)500×0.7=350(元)
500×0.9=4500(元)
相同价格的物品,折扣数小的,价格就低。
家庭指引:
a组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。
b组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。
九年级数学教案模版篇10
一、教学思想:
以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施,使每个学生都能够在数学学习过程中获得最适合自己的发展。目的是让学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力;提高学习数学的兴趣,培养学生良好的学习习惯,实事求是的态度,顽强的学习毅力;培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、学生基本情况分析:
全班共有学生32人,其中男生12人,女生20人,男女比例失衡。由于新接手教学,对全班具体情况不甚了解,总体来看,本班成绩还算可以,能立于年级上游水平(上期末第三)。但在学生所学知识的掌握程度上,已经出现严重的两极分化,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,就连简单的基础知识都不能有效的掌握,成绩较差。整体上学生仍然缺乏推理的思考方法,在写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生上课不是很专心,而且过于自负,自我感觉良好,目空一切,学习习惯有待改善。陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。
三、本学期的教学内容
九年级上册:
第一章:一元二次方程;第2章:命题与证明;第3章:图形的相似;第4章:锐角三角形函数;第5章:概率的计算
九年级下册:
第一章:反比例函数;第二章:二次函数;第三章:圆;第四章:统计估计。
四、教学目标:
1、了解一元二次方程、一元二次方程的解的概念;理解配方法,会用因式分解法、直接开平方法、配方法和公式法解简单的数字系数的一元二次方程;会建立一元二次方程的模型解决简单的实际问题,并会根据实际意义检验求的解是否合理;理解解一元二次方程的基本思想是:降低次数,转化为两个一元一次方程。
2、了解定义、命题、公理和定理的含义,会区分命题的条件与结论;理解证明的必要性,掌握用综合法证题的格式,并使学生体会到证明的过程步步有理有据;
3、了解线段的比、成比例线段,掌握比例的基本性质,并能熟练地进行比例的变形,通过生活中的实例了解黄金分割;理解相似形的概念,熟练掌握相似三角形的判定与性质,掌握相似多边形的性质;了解图形的位似,能够利用位似变换将一个图形放大或缩小;能利用图形相似一些实际问题。
4、理解锐角的正统、余弦及正切的定义,会运用锐角三角函数、勾股定理及直角三角形中两锐角互余的关系解直角三角形;能运用解直角三角形的知识,解决简单的实际问题。
5、理解概率的意义,会用频率估计概率,会计算简单事件的概率,能运用概率的概念,解决一些简单的实际问题。
6、理解反比函数的意义,能根据已知条件确定反比例函数表达式;能画出反比例函数的图象,根据图象和解析表达式探索并理解其性质;能用反比例函数解决某些实际问题。
7、体会并理解二次函数的意义,掌握二次函数的图象和性质;会利用二次函数解决简单的实际问题。
8、理解圆及及其有关概念,掌握圆的基本性质;探索并掌握点与圆、直线与圆以及圆与圆的位置关系,并能利用这些关系解决实际问题;会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积;掌握平行投影与中心投影的有关理念,熟悉基本几何体的三视图。
9、学会收集、整理、描述和分析数据;会用样本的平均数、方差来估计总体的平均数和方差;能借用工具处理较为复杂的统计数据,掌握基本的统计学知识。
10、全面培养、提高学生的数学思维能力、分析问题的能力、推理论证的能力、解决问题的能力;掌握并能应用重要的数学基本思想和方法。
九年级数学教案模版篇11
一、教学目标
1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。
3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。
二、重点·难点·疑点及解决办法
1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2.教学难点:根据数与数字关系找等量关系。
3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。
4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。
三、教学过程
1.复习提问
(1)列方程解应用问题的步骤?
①审题,②设未知数,③列方程,④解方程,⑤答。
(2)两个连续奇数的表示方法是,(n表示整数)
2.例题讲解
例1两个连续奇数的积是323,求这两个数。
分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)设较小奇数为x,另一个为,
据题意,得
整理后,得
解这个方程,得。
由得,由得,
答:这两个奇数是17,19或者-19,-17。
解法(二)设较小的奇数为,则较大的奇数为。
据题意,得
整理后,得
解这个方程,得。
当时,
当时,。
答:两个奇数分别为17,19;或者-19,-17。
解法(三)设较小的奇数为,则另一个奇数为。
据题意,得
整理后,得
解得,,或。
当时,。
当时,。
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1.三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2.解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3.选出三种方法中最简单的一种。
练习1.两个连续整数的积是210,求这两个数。
2.三个连续奇数的和是321,求这三个数。
3.已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。
例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数十位数字个位数字。
三位数百位数字十位数字个位数字。
解:设个位数字为x,则十位数字为,这个两位数是。
据题意,得,
整理,得,
解这个方程,得(不合题意,舍去)
当时,
答:这个两位数是24。
以上分析,解答,教师引导,板书,学生回答,体会,评价。
注意:在求得解之后,要进行实际题意的检验。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
教材P42A1、2
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.
九年级数学教案模版篇12
教学目标:
1.探索直角三角形中锐角三角函数值与三边之间的关系。
2.掌握三角函数定义式 : sinA= , cosA= ,tanA= 。
重点和难点
重点: 三角函数定义的理解 。
难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。
【教学过程】
一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课
二、新课教学
1、合作探究
见课本
2、三角函数 的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.
∠A 的对边与邻边的比叫 做∠A的正弦(sine),记作s inA,即s in A=
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=
∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即
锐角A的正弦、余弦和正切统称∠A的三角函数.
注意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ?
师:(点拨)直角三角形中,斜边大于直角边.
生:独立思考,尝试回答 ,交流结果.
明确:0<sina<1,0 p="" <cosa<1.
巩固练 习:课内练习T1、作业题T1、2
3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.
分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上 计算结果,你 发现了什么?
明确:sinA=cosB,cosA=sinB,tanA•ta nB=1
4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6
三、课 堂小结:谈谈今天 的收获
1、内容总结
(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则
∠α的正弦 , ∠α的余弦 ,
∠α的正切
(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=1
2、 方法归纳
在涉及直角三角形边角关系时, 常借助三角函数定义来解
九年级数学教案模版篇13
圆
经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.
重点
经历形成圆的概念的过程,理解圆及其有关概念.
难点
理解圆的概念的形成过程和圆的集合性定义.
活动1 创设情境,引出课题
1.多媒体展示生活中常见的给我们以圆的形象的物体.
2.提出问题:我们看到的物体给我们什么样的形象?
活动2 动手操作,形成概念
在没有圆规的情况下,让学生用铅笔和细线画一个圆.
教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定?
教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.
1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.
2.小组讨论下面的两个问题:
问题1:圆上各点到定点(圆心O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
3.小组代表发言,教师点评总结,形成新概念.
(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)
活动3 学以致用,巩固概念
1.教材第81页 练习第1题.
2.教材第80页 例1.
多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.
活动4 自学教材,辨析概念
1.自学教材第80页例1后面的内容,判断下列问题正确与否:
(1)直径是弦,弦是直径;半圆是弧,弧是半圆.
(2)圆上任意两点间的线段叫做弧.
(3)在同圆中,半径相等,直径是半径的2倍.
(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)
(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.
2.指出图中所有的弦和弧.
活动5 达标检测,反馈新知
教材第81页 练习第2,3题.
活动6 课堂小结,作业布置
课堂小结
1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
2.证明几点在同一圆上的方法.
3.集合思想.
作业布置
1.以定点O为圆心,作半径等于2厘米的圆.
2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.
求证:A,B,C,D四个点在以点O为圆心的同一圆上.
答案:1.略;2.证明OA=OB=OC=OD即可.
九年级数学教案模版篇14
教学目标
1.使学生掌握百分数、小数互化的方法,并能正确的互化。
2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。
3.在学习的过程中培养学生的分析思维和抽象概括能力。
教学重难点
使学生理解掌握百分数和小数互化的方法。
教学工具
课件
教学过程
一、活动(一)复习准备
1、课件出示复习题。
张宇跳绳个数是陈聪的1.37倍。
王志祥跳绳个数是陈聪的6/5.
刘星宇跳绳个数是陈聪的137.5%.
思考:这三个人谁跳得最多,怎么比较?
2.引入新课。
在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?
这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。
二、活动(二)百分数和小数的互化。
(1)回忆小数化分数的过程。
(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?
三、活动(三)百分数化成小数
1、例1:把0.25,1.4,0.123化成百分数。
①小数化百分数分几步进行?
②学生回答,教师板书:0.25=25/100=25%
③1.4怎样化成分母是100的分数?根据什么?
④“做一做”:把下面各小数化成百分数。
0.381.050.0553
⑤观察例1的各小数,化成百分数后发生了怎样的变化?
你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?
⑥现在你能很快地把下列小数化成百分数吗?(口答)
2.50.7850.16
2、例2:把27%,135%,0.4%化成小数。
学生自己试做,学生总结方法
①说一说百分数化小数的方法。
②观察百分数化成小数发生了什么变化?
③把下面各百分数化成小数
15%80%3.5%
3、小结。
通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?
四、巩固与提高
1、P80“做一做”
2、练习十九的第2题
五、作业
练习十九的第1题
课后习题
练习十九的第1题
九年级数学教案模版篇15
弧、弦、圆心角
1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.
2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.
重点
圆心角、弦、弧之间的相等关系及其理解应用.
难点
从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.
活动1 动手操作,得出性质及概念
1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.
2.将⊙O绕圆心旋转任意角度后会出现什么情况?圆是中心对称图形吗?
3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念.
如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.
4.判断图中的角是否是圆心角,说明理由.
活动2 继续操作,探索定理及推论
1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?请与小组同学交流.
2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:在等圆中相等的圆心角所对的弧相等,所对的弦也相等.
3.在同一个圆中,相等的圆心角所对的弧相等吗?所对的弦相等吗?
4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.
5.分析定理:去掉“在同圆或等圆中”这个条件,行吗?
6.定理拓展:教师引导学生类比定理,独立用类似的方法进行探究:
(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?
综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.
活动3 学以致用,巩固定理
1.教材第84页 例3.
多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.
活动4 达标检测,反馈新知
教材第85页 练习第1,2题.
活动5 课堂小结,作业布置
课堂小结
1.圆心角概念及圆的旋转不变性和对称性.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.
3.数学思想方法:类比的数学方法,转化与化归的数学思想.
作业布置
1.如果两个圆心角相等,那么( )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
2.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,求弦CE的长.
3.如图,在⊙O中,C,D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M,N在⊙O上.
(1)求证:︵AM=︵BN;
(2)若C,D分别为OA,OB中点,则︵AM=︵MN=︵BN成立吗?
答案:1.D;2.3;3.(1)连接OM,ON,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出︵AM=︵BN;(2)成立.