教案吧 > 初中教案 > 九年级教案 >

初三数学教案电子版

时间: 新华 九年级教案

教案可以帮助教师根据学生的实际情况,面向大多数学生,并调动学生学习的积极性。这里提供优秀的初三数学教案电子版,方便大家写初三数学教案电子版参考。

初三数学教案电子版篇1

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

初三数学教案电子版篇2

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.

教学目标

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.态度、情感、价值观

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

重难点关键

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

教学过程

一、复习引入

学生活动:列方程.

问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

解:去括号,得:

40-16x-10x+4x2=18

移项,得:4x2-26x+22=0

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括号,得:

x2+2x+1+x2-4=1

移项,合并得:2x2+2x-4=0

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

三、巩固练习

教材P32练习1、2

四、应用拓展

例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

证明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不论取何值,该方程都是一元二次方程.

五、归纳小结(学生总结,老师点评)

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

六、布置作业

初三数学教案电子版篇3

教学目标

1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;

2、培养学生从形象思维向抽象思维的过渡;

3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。

重点、难点

1、重点:对圆点的.轨迹的认识。

2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。

教学活动设计(在老师与学生的交流对话中完成教学目标)

(一)创设学习情境

1、对“圆”的形成观察——理解——引出轨迹的概念

(使学生在老师的引导下从感性知识到理性知识)

观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)

理解:圆上的点具有两个性质:

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的的点都在圆上;(结合下图)

引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲)

上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.

轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。(研究圆是轨迹概念的切入口、基础和关键)

(二)类比、研究1

(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)

轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;

轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;

(三)巩固概念

练习:画图说明满足下列条件的点的轨迹:

(1)到定点A的距离等于3cm的点的轨迹;

(2)到∠AOC的两边距离相等的点的轨迹;

(3)经过已知点A、B的圆O,圆心O的轨迹.

(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)

(四)类比、研究2

(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)

轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;

轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.

(五)巩固训练

练习题1:画图说明满足下面条件的点的轨迹:

1.到直线l的距离等于2cm的点的轨迹;

2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.

(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生)

练习题2:判断题

1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.()

2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.()

3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.()

4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.()

(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)

(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)

(六)理解、小结

(1)轨迹的定义两层意思;

(2)常见的五种轨迹。

(七)作业

教材P82习题2、6

初三数学教案电子版篇4

学习目标

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

学习过程

一、温故知新:

(学生活动)同学们口答下面两个问题.二、自主学习:

1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

自学教材P90---P93,思考下列问题:

1、什么叫圆周角?圆周角的两个特征:。

2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

(1)一个弧上所对的圆周角的个数有多少个?

(2).同弧所对的圆周角的度数是否发生变化?

(3).同弧上的圆周角与圆心角有什么关系?

3、默写圆周角定理及推论并证明。

4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?

5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

三、典型例题:

例1、(教材93页例2)如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

四、巩固练习:

1、(教材P93练习1)

解:

2、(教材P93练习2)

3、(教材P93练习3)

证明:

4、(教材P95习题24.1第9题)

五、总结反思:

达标检测

1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如图2,∠1、∠2、∠3、∠4的大小关系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()

A.100°B.110°C.120°D.130°

4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________.

5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.

(4)(5)

6.(中考题)如图5,于,若,则

7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

拓展创新

1.如图,已知AB=AC,∠APC=60°

(1)求证:△ABC是等边三角形.

(2)若BC=4cm,求⊙O的面积.

3、教材P95习题24.1第12、13题。

布置作业教材P95习题24.1第10、11题。

初三数学教案电子版篇5

学习目标

1、一元二次方程的求根公式的推导

2、会用求根公式解一元二次方程.

3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯

学习重、难点

重点:一元二次方程的求根公式.

难点:求根公式的条件:b2-4ac≥0

学习过程:

一、自学质疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步骤是什么?

3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

二、交流展示:

刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?

三、互动探究:

一般地,对于一元二次方程ax2+bx+c=0

(a≠0),当b2-4ac≥0时,它的根是

用求根公式解一元二次方程的方法称为公式法

由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.

(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.

四、精讲点拨:

例1、课本例题

总结:其一般步骤是:

(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)

(2)求出b2-4ac的值.(先判别方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.

例2、解方程:

(1)2x2-7x+3=0(2)x2-7x-1=0

(3)2x2-9x+8=0(4)9x2+6x+1=0

五、纠正反馈:

做书上第P90练习。

六、迁移应用:

例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.

例4、求方程的两根之和以及两根之积

拓展应用:关于的一元二次方程的一个根是,则;

方程的另一根是

21069