教案吧 > 初中教案 > 九年级教案 >

初三数学教案大全

时间: 新华 九年级教案

好的教案应该包括合理的教学过程,包括导入新课、讲授新课、巩固练习、课堂小结、布置作业等环节。写初三数学教案大全要注意什么?这里给大家提供初三数学教案大全下载,供大家参考。

初三数学教案大全篇1

学习目标

1、一元二次方程的求根公式的推导

2、会用求根公式解一元二次方程.

3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯

学习重、难点

重点:一元二次方程的求根公式.

难点:求根公式的条件:b2-4ac≥0

学习过程:

一、自学质疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步骤是什么?

3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

二、交流展示:

刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?

三、互动探究:

一般地,对于一元二次方程ax2+bx+c=0

(a≠0),当b2-4ac≥0时,它的根是

用求根公式解一元二次方程的方法称为公式法

由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.

(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.

四、精讲点拨:

例1、课本例题

总结:其一般步骤是:

(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)

(2)求出b2-4ac的值.(先判别方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.

例2、解方程:

(1)2x2-7x+3=0(2)x2-7x-1=0

(3)2x2-9x+8=0(4)9x2+6x+1=0

五、纠正反馈:

做书上第P90练习。

六、迁移应用:

例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.

例4、求方程的两根之和以及两根之积

拓展应用:关于的一元二次方程的一个根是,则;

方程的另一根是

初三数学教案大全篇2

教学目标

知识与技能目标

1、构建本章的部分知识框图。

2、复习一元二次方程的概念、解法。

过程与方法

1、通过对本章方程解法的复习,进一步提高学生的运算能力。

2、在解一元二次方程的过程中体会转化等数学思想。

情感、态度与价值观

通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

教学重点

1、一元二次方程的概念

2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

教学难点

解法的灵活选择;例4和例5的解法。

教学过程

一、创设情境

导入新课

问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

二、师生互动

共同探究

1、复习概念

例1

例2

2、四种解法

(1)

解法及其关系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四种解法分别解此方程

(4)方法优选

3、方法补充

例4

4、解法纠错

例5

解关于x的方程

错误解法

正确解法

三、小结反思

提炼思想

我们有哪些收获?解方程的思想方法是什么?

四、布置作业

巩固提高

初三数学教案大全篇3

新的学期又开始了,我又担任九年级数学学科的教学,九年级时间非常紧张,既要完成新课程的教学又要考虑下学期对初中阶段整个数学知识的全面系统的复习。所以在注意时间的安排上,同时把握好教学进度的基础上特制定本学期的教学计划:

一、基本情况分析:

上学年学生期末考试的成绩总体来看比较好,但是优生面不广,尖子不尖。在学生所学知识的掌握程度上,良莠不齐,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对差一点的学生来说,有些基础知识还不能有效的掌握,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到很好的培养。在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,一部分学生上课能全神贯注,积极的投入到学习中去,大部分学生对数学学习好高鹜远、心浮气躁,学习态度和学习习惯还需培养。学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致志学习的习惯,主动纠正(考试、作业后)错误的习惯,有些学生不具有或不够重视,需要教师的督促才能做,陶行知说:“教育就是培养习惯”,这是本期教学中重点予以关注的。

二、指导思想:

通过九年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

三、教学内容

本学期的教学内容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;

第25章:解直角三角形;第26章:随机事件的概率。

四、教学重点、难点

重点:

1、要求学生掌握证明的基本要求和方法,学会推理论证;

2、探索证明的思路和方法,提倡证明的多样性。

难点:

1、引导学生探索、猜测、证明,体会证明的必要性;

2、在教学中渗透如归纳、类比、转化等数学思想。

五、在教学过程中抓住以下几个环节:

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)抓住课堂45分钟。严格按照教学计划,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

六、教学措施:

1.认真学习钻研新课标,掌握教材。

2.认真备课,争取充分掌握学生动态。

3.认真上好每一堂课。

4.落实每一堂课后辅助,查漏补缺。

5.积极与其它老师沟通,加强教研教改,提高教学水平。

6.复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

除了以上计划外,我还将预计开展培优和治跛工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力。

初三数学教案大全篇4

直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±

即x+3=,x+3=-

所以,方程的两根x1=-3+,x2=-3-

解:略.

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页 练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页 复习巩固1.

初三数学教案大全篇5

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后平面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后平面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

初三数学教案大全篇6

1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.

2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.

3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

利用一元二次方程解决传播问题、百分率问题.

难点

如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.

一、引入新课

1.列方程解应用题的基本步骤有哪些?应注意什么?

2.科学家在细胞研究过程中发现:

(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?

(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?

(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?

二、教学活动

活动1:自学教材第19页探究1,思考教师所提问题.

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.

(2)本题中有哪些数量关系?

(3)如何利用已知的数量关系选取未知数并列出方程?

解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合题意舍去)

因此每轮传染中平均一个人传染了10个人.

变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?

活动2:自学教材第19页~第20页探究2,思考老师所提问题.

两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?

(1)如何理解年平均下降额与年平均下降率?它们相等吗?

(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.

(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);

二月(或二年)后产量为a(1±x)2;

n月(或n年)后产量为a(1±x)n;

如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.

(4)对甲种药品而言根据等量关系列方程为:________________.

三、课堂小结与作业布置

课堂小结

1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.

2.传播问题解决的关键是传播源的确定和等量关系的建立.

3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).

4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.

作业布置

教材第21-22页习题21.3第2-7题.第2课时解决几何问题

1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.

2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.

3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.

重点

通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.

难点

在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.

活动1创设情境

1.长方形的周长________,面积________,长方体的体积公式________.

2.如图所示:

(1)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为2cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

(2)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为xcm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.

活动2自学教材第20页~第21页探究3,思考老师所提问题

要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).

(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.

(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.

(3)若设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.

(4)根据等量关系:________,可列方程为:________.

(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)

(6)思考如果设正中央矩形的长与宽分别为9xcm和7xcm,你又怎样去求上下、左右边衬的宽?

活动3变式练习

如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.

答案:路的宽度为5米.

活动4课堂小结与作业布置

课堂小结

1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.

2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.

作业布置

教材第22页习题21.3第8,10题.

初三数学教案大全篇7

图案设计

利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.

通过复习轴对称、平移、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.

1、设计图案.

2、如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.

一、复习引入

1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.

2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?

3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?

1.AB与CD平行且相等;

2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.

CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.

3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.

二、探索新知

请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.

例1 (学生活动)学生亲自动手操作题.

按下面的步骤,请每一位同学完成一个别致的图案.

(1)准备一张正三角形纸片(课前准备)(如图a);

(2)把纸片任意撕成两部分(如图b,如图c);

(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;

(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);

(5)把如图(d)平移到如图(c)的右边,得到如图(e);

(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.

老师必要时可以给予一定的指导.

三、课堂小结

本节课应掌握:

利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.

初三数学教案大全篇8

【学习目标】

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

【学习过程】

一、温故知新:

(学生活动)同学们口答下面两个问题.

1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

二、自主学习:

自学教材P90---P93,思考下列问题:

1、什么叫圆周角?圆周角的两个特征:。

2、在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

(1)一个弧上所对的圆周角的个数有多少个?

(2).同弧所对的圆周角的度数是否发生变化?

(3).同弧上的圆周角与圆心角有什么关系?

3、默写圆周角定理及推论并证明。

4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?

5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

三、典型例题:

例1、(教材93页例2)如图,⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

四、巩固练习:

1、(教材P93练习1)

解:

2、(教材P93练习2)

3、(教材P93练习3)

证明:

4、(教材P95习题24.1第9题)

五、总结反思:

【达标检测】

1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如图2,∠1、∠2、∠3、∠4的大小关系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于()

A.100°B.110°C.120°D.130°

4.半径为2a的⊙O中,弦AB的长为2a,则弦AB所对的圆周角的度数是________.

5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.

(4)(5)

6.(中考题)如图5,于,若,则

7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

【拓展创新】

1.如图,已知AB=AC,∠APC=60°

(1)求证:△ABC是等边三角形.

(2)若BC=4cm,求⊙O的面积.

3、教材P95习题24.1第12、13题。

【布置作业】

教材P95习题24.1第10、11题。

初三数学教案大全篇9

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.

难点:①圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.

2、教法建议

本节内容需要4课时

第一课时:圆的定义和点和圆的位置关系

(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));

(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.

第二课时:圆的有关概念

(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.

第三、四课时:点的轨迹

条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.

第一课时:圆(一)

教学目标:

1、理解圆的描述性定义,了解用集合的观点对圆的定义;

2、理解点和圆的位置关系和确定圆的条件;

3、培养学生通过动手实践发现问题的能力;

4、渗透“观察→分析→归纳→概括”的数学思想方法.

教学重点:点和圆的关系

教学难点:以点的集合定义圆所具备的两个条件

教学方法:自主探讨式

教学过程设计(总框架):

一、创设情境,开展学习活动

1、让学生画圆、描述、交流,得出圆的第一定义:

定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.

2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

从旧知识中发现新问题

观察:

共性:这些点到O点的距离相等

想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?

(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的点都在圆上.

定义2:圆是到定点距离等于定长的点的集合.

3、点和圆的位置关系

问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

如果圆的半径为r,点到圆心的距离为d,则:

点在圆上d=r;

点在圆内d

点在圆外d>r.

“数”“形”

二、例题分析,变式练习

练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.

例1求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.

已知(略)

求证(略)

分析:四边形ABCD是矩形

A=OC,OB=OD;AC=BD

OA=OC=OB=OD

要证A、B、C、D4个点在以O为圆心的圆上

证明:∵四边形ABCD是矩形

∴OA=OC,OB=OD;AC=BD

∴OA=OC=OB=OD

∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.

符号“”的应用(要求学生了解)

证明:四边形ABCD是矩形

OA=OC=OB=OD

A、B、C、D4个点在以O为圆心,OA为半径的圆上.

小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.

问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)

练习1求证:菱形各边的中点在同一个圆上.

(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)

练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.

(1)和点A的距离等于2cm的点的集合;

(2)和点B的距离等于2cm的点的集合;

(3)和点A,B的距离都等于2cm的点的集合;

(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)

三、课堂小结

问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:

(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;

(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;

(3)注重对数学能力的培养

四、作业82页2、3、4.

初三数学教案大全篇10

本学期是初中学习的关键时期,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。

一、学情分析

经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想

坚持贯彻党的____教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析

本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:

(1)审题不清,不能正确理解题意;

(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

(3)对所学知识综合应用能力不够;

(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

四、教学目标

态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。

五、采取的措施

1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;

2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;

3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;

5、积极与其他教师沟通,加强教研教改,提高教学水平;

6、经常听取学生良好的合理化建议;

7、以“两头”带“中间”的战略不变;

8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;

9、认真开展课内、课外活动,激发学生的学习兴趣。

10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。

初三数学教案大全篇11

21.2.1配方法(3课时)

第1课时直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页复习巩固1.第2课时配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1用配方法解下列关于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

解:略.

三、巩固练习

教材第9页练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业布置

教材第17页复习巩固2,3.(1)(2).第3课时配方法的灵活运用

初三数学教案大全篇12

二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).

(3)掌握•=(a≥0,b≥0),=•;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1二次根式3课时

21.2二次根式的乘法3课时

21.3二次根式的加减3课时

教学活动、习题课、小结2课时

21.1二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用(a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如(a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“(a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=.

二、探索新知

很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0,有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.当x是多少时,在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.

解:由3x-1≥0,得:x≥

当x≥时,在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时,+在实数范围内有意义?

分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一个正方形的面积是5,那么它的边长是()

A.5B.C.D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时,+x2在实数范围内有意义?

3.若+有意义,则=_______.

4.使式子有意义的未知数x有()个.

A.0B.1C.2D.无数

5.已知a、b为实数,且+2=b+4,求a、b的值.

第一课时作业设计答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=.

2.依题意得:,

∴当x>-且x≠0时,+x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4

初三数学教案大全篇13

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

初三数学教案大全篇14

教学过程设计

一、创设情境引入课题

活动1

问题:

你们还记得一次函数图象与性质吗?

设计意图

通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。

师生形为:

教师提出问题。学生思考、交流,回答问题。教师根据学生活动情况进行补充和完善。

二、类比联想探究交流

活动2

问题:

例2画出反比例函数y=与y=-的图象。

(教师先引导学生思考,示范画出反比例函数y=的图象,再让学生尝试画出反比例函数y=-的图象。)

设计意图:

通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。

师生形为:

学生可以先自己动手画图,相互观摩。

在此活动中,教师应重点关注:

1学生能否顺利进行三种表示方法的相互转换:

2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;

3在动手作图的过程中,能否勤于动手,乐于探索。

比较y=、y=-的图象有什么共同特征?它们之间有什么关系?

(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。)

设计意图:

学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。

师生形为:

学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。

教师参与到学生的讨论中去,积极引导。

(三)探索比较发现规律

活动3

问题:

观察反比例函数y=与y=-的图象。

你能发现它们的共同特征以及不同点吗?

每个函数的图象分别位于哪几个象限?

在每一个象限内,y随x的变化如何变化?

由学生分小组讨论,观察思考后进行分析、归纳,得到反比例函数y=的性质:

形状:反比例函数的图象是由两支双曲线组成的.因此称反比例函数的图象为双曲线;

位置:当k0时,两支双曲线分别位于第一,三象限内,在每个象限内y随x增大而减小;当k0时,两支双曲线分别位于第二,四象限内,在每个象限内y随x增大而增大;

任意一组变量的乘积是一个定值,即xy=k.

(注意:双曲线的两个分支都不会与x轴,y轴相交。)

学生通过对反比例函数图象进行观察、分析,总结出了反比例函数的性质,使学生明白性质的可靠性;通过对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应的象限内,y随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;使学生经历从特殊到一般的过程,体验知识产生、形成的过程,逐步达到培养学生抽象概括能力和激发求知欲望;同时通过对反比例函数增减性的讨论,对学生进行辩证唯物主义思想教育.

四、运用新知拓展训练

设计意图:

拓展练习是为了让学生灵活运用反比例函数性质解决问题,学生在研究问题的特点时,能够紧扣性质进行分析,达到理解并掌握性质的目的.

师生形为:

学生独立思考完成。

教师巡视,引导学困生完成任务。

五、归纳总结布置作业

问题:

本节课学习了哪些知识?在知识应用过程中需要注意什么?你有什么收获?

初三数学教案大全篇15

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.教学目标

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.

1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键

1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念.教学过程

一、复习引入

学生活动:列方程.问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺,?根据题意,?得________.整理、化简,得:__________.二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

2

一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

2

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

22

分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略

三、巩固练习

教材练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x+2=5y-3(2)x=4(3)3x-2

2

22

5222

=0(4)x-4=(x+2)(5)ax+bx+c=0x

四、应用拓展

22

例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.

22

证明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不论m取何值,该方程都是一元二次方程.

2

?练习:1.方程(2a—4)x—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 

21958