教案吧 > 初中教案 > 九年级教案 >

2024初三数学教案

时间: 新华 九年级教案

一份优秀的教案应该采用多种教学方法和手段,例如讲解、实验、讨论等,以激发学生的学习兴趣并提高教学效果。2024初三数学教案怎样写才正确?接下来给大家整理2024初三数学教案,希望对大家有所帮助。

2024初三数学教案篇1

直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±

即x+3=,x+3=-

所以,方程的两根x1=-3+,x2=-3-

解:略.

例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页 练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页 复习巩固1.

2024初三数学教案篇2

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

2024初三数学教案篇3

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.教学目标

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.

1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点关键

1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念.教学过程

一、复习引入

学生活动:列方程.问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。

如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺,?根据题意,?得________.整理、化简,得:__________.二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

2

一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.

解:略

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

2

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

22

分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略

三、巩固练习

教材练习1、2

补充练习:判断下列方程是否为一元二次方程?

(1)3x+2=5y-3(2)x=4(3)3x-2

2

22

5222

=0(4)x-4=(x+2)(5)ax+bx+c=0x

四、应用拓展

22

例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.

2

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.

22

证明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不论m取何值,该方程都是一元二次方程.

2

?练习:1.方程(2a—4)x—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为

一元一次方程?

/4m/-4

2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 

2024初三数学教案篇4

21.2.1配方法(3课时)

第1课时直接开平方法

理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.

提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.

重点

运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.

难点

通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.

一、复习引入

学生活动:请同学们完成下列各题.

问题1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根据完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?

二、探索新知

上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?

(学生分组讨论)

老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的两根为t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接开平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的两根x1=-3+2,x2=-3-2

解:略.

例2市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率.

分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2

解:设每年人均住房面积增长率为x,

则:10(1+x)2=14.4

(1+x)2=1.44

直接开平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的两根是x1=0.2=20%,x2=-2.2

因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.

所以,每年人均住房面积增长率应为20%.

(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?

共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.

三、巩固练习

教材第6页练习.

四、课堂小结

本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.

五、作业布置

教材第16页复习巩固1.第2课时配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1用配方法解下列关于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

解:略.

三、巩固练习

教材第9页练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业布置

教材第17页复习巩固2,3.(1)(2).第3课时配方法的灵活运用

2024初三数学教案篇5

教材分析

本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

学情分析

1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。

教学目标

知识与技能:

1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

2、能根据具体问题的实际意义,检验结果是否合理。

过程与方法:

1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

教学重点和难点

重点:利用增长率问题中的数量关系,列出方程解决问题。

难点:理清增长率问题中的数量关系。

2024初三数学教案篇6

[实践与探索]

例1.在同一直角坐标系中,画出函数与的图象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

2024初三数学教案篇7

本学期是初中学习的关键时期,教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面特制定以下教学复习计划。

一、学情分析

经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想

坚持贯彻党的____教育方针,继续深入开展新课程教学改革。立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析

本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:

(1)审题不清,不能正确理解题意;

(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;

(3)对所学知识综合应用能力不够;

(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

四、教学目标

态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。

五、采取的措施

1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划;

2、认真上好每一堂课,抓住关键点,分散难点,突出重点,在培养能力上下工夫;

3、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;

4、加强学校教师与家长、社会的联系,共同努力提高学生的学习成绩;

5、积极与其他教师沟通,加强教研教改,提高教学水平;

6、经常听取学生良好的合理化建议;

7、以“两头”带“中间”的战略不变;

8、注重教学中的自主学习、合作学习、探究学习等学习方式的引导;

9、认真开展课内、课外活动,激发学生的学习兴趣。

10、抓好中招备考工作。认真研读中招数学的考试要求和近期的考试题目类型,设计好复习内容,让学生有针对性做好复习,迎接中招的到来。

2024初三数学教案篇8

新的学期又开始了,我又担任九年级数学学科的教学,九年级时间非常紧张,既要完成新课程的教学又要考虑下学期对初中阶段整个数学知识的全面系统的复习。所以在注意时间的安排上,同时把握好教学进度的基础上特制定本学期的教学计划:

一、基本情况分析:

上学年学生期末考试的成绩总体来看比较好,但是优生面不广,尖子不尖。在学生所学知识的掌握程度上,良莠不齐,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对差一点的学生来说,有些基础知识还不能有效的掌握,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到很好的培养。在以后的教学中,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,一部分学生上课能全神贯注,积极的投入到学习中去,大部分学生对数学学习好高鹜远、心浮气躁,学习态度和学习习惯还需培养。学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致志学习的习惯,主动纠正(考试、作业后)错误的习惯,有些学生不具有或不够重视,需要教师的督促才能做,陶行知说:“教育就是培养习惯”,这是本期教学中重点予以关注的。

二、指导思想:

通过九年数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

三、教学内容

本学期的教学内容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:图形的相似;

第25章:解直角三角形;第26章:随机事件的概率。

四、教学重点、难点

重点:

1、要求学生掌握证明的基本要求和方法,学会推理论证;

2、探索证明的思路和方法,提倡证明的多样性。

难点:

1、引导学生探索、猜测、证明,体会证明的必要性;

2、在教学中渗透如归纳、类比、转化等数学思想。

五、在教学过程中抓住以下几个环节:

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)抓住课堂45分钟。严格按照教学计划,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

(3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

六、教学措施:

1.认真学习钻研新课标,掌握教材。

2.认真备课,争取充分掌握学生动态。

3.认真上好每一堂课。

4.落实每一堂课后辅助,查漏补缺。

5.积极与其它老师沟通,加强教研教改,提高教学水平。

6.复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

除了以上计划外,我还将预计开展培优和治跛工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力。

2024初三数学教案篇9

课题 二次函数y=ax2的图象(一)

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点

重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程

复习提问

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

新课

1.由具体问题引出二次函数的定义。

(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

解:(1)函数解析式是S=πR2;

(2)函数析式是S=30L—L2;

(3)函数解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例启发学生归纳出:

(1)函数解析式均为整式;

(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:

(1)列表∵x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;

(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;

(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:

(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

小结

1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

补充例题

下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作业:P122中A组1,2,3。

四、教学注意问题

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)

(2)如何判断y=x2的.图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)

课题 二次函数y=ax2的图象(一)

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

二、教学重点、难点

重点:对二次函数概念的初步理解。

难点:会用描点法画二次函数y=ax2的图象。

三、教学过程

复习提问

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

新课

1.由具体问题引出二次函数的定义。

(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

解:(1)函数解析式是S=πR2;

(2)函数析式是S=30L—L2;

(3)函数解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例启发学生归纳出:

(1)函数解析式均为整式;

(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:

(1)列表∵x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;

(2)描点按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;

(3)边线用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:

(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x<-3的区间是无限延伸的。

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们–1与1之间每隔0。2的间距取x值表和图13-14。按课本P118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

小结

1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

补充例题

下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作业:P122中A组1,2,3。

四、教学注意问题

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(1)y=x2的图象的图象有什么特点。(答:具有对称性。)

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)

2024初三数学教案篇10

教学目标

知识与技能目标

1、构建本章的部分知识框图。

2、复习一元二次方程的概念、解法。

过程与方法

1、通过对本章方程解法的复习,进一步提高学生的运算能力。

2、在解一元二次方程的过程中体会转化等数学思想。

情感、态度与价值观

通过师生共同的活动,使学生在交流和反思的过程中建立本章的知识体系,从而体验学习数学的成就感.

教学重点

1、一元二次方程的概念

2、一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法;

教学难点

解法的灵活选择;例4和例5的解法。

教学过程

一、创设情境

导入新课

问题:本章中,我们有哪些收获?(教师点拨引导学生构建本章部分知识框图)

二、师生互动

共同探究

1、复习概念

例1

例2

2、四种解法

(1)

解法及其关系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四种解法分别解此方程

(4)方法优选

3、方法补充

例4

4、解法纠错

例5

解关于x的方程

错误解法

正确解法

三、小结反思

提炼思想

我们有哪些收获?解方程的思想方法是什么?

四、布置作业

巩固提高

2024初三数学教案篇11

本学年既有新任务要完成还有复习更要兼顾,因此事非常重要的一个学期,要以培养学生创新精神和实践能力为重点,探索有效教学新模式。以课堂教学为中心,紧紧围绕初中数学教材、数学学科“基本要求”进行教学,针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效的复习途径,力求达到减负、加压、增效的目的,促进学生生动、活泼、主动地学习,力求中考取得好成绩。通过数学课的教学,使学生切实学好从事现代化建设和进一步学习所必须的基本知识和基本能力,在思维能力、情感态度与价值观等多方面得到进步和发展。

一、学情分析:

本学年我带九年级二班,学生上学期成绩居全县第四,两极分化越来越严重。有部分学生成绩下滑很明显,学习习惯较差。做事慢慢腾腾,有几个学生应该考优生的学生都没有考到优生,如连清,赵熙,马晓宇,李功奎,张信心,夏森,柯昭君,许鑫鑫,徐婷婷等,这些也许是老师督导不到位,也有少数学生自制能力较差,对自己要求不严,甚至自暴自弃。这些都需要针对不同情况采取相应措施,耐心教育。

二、教材分析:

本学期的新内容只剩两章:解直角三角形和投影。

四、教学目标:

1、在教学过程中抓住以下几个环节:(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。(2)上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。(7)积极与其它老师沟通,加强教研教改,提高教学水平。(8)经常听取学生良好的合理化建议。(9)以“两头”带“中间”战略思想不变。(10)深化两极生的训导。

五、严格按照教学进度,有序的进行教学工作。用心去做,从细节去做,尽自己追大的努力,发挥自己的能力去做好初三毕业班的教学工作。

六、强化复习指导。分二阶段复习:(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆.复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。

中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

(二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益

七、不断钻研业务,提高业务能力及水平。

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

八、分层辅导,因材施教对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

2024初三数学教案篇12

教材分析

本节内容是上一节课在学习余角补角基础上学习的,学生有了一定的基础,为以后学__面直角坐标系的学习做好准备。

学情分析

本节课对于学生来说学习起来并不太难,在小学阶段学生已经接触过方位角的内容,而且本节课内容和生活中的方向联系紧密,故学生比较有兴趣。

教学目标

理解方位角的意义,掌握方位角的判别和应用,通过现实情境,充分利用学生的生活经验去体会方位角的意义。

教学重点和难点

重点:方位角的判别与应用

难点:方位角的画法及变式题

教学过程(本文来自优秀教育资源网斐.斐.课.件.园)

教学环节教师活动预设学生行为设计意图

一、创设情境,导入新课

二、讲授新课

三、巩固练习

四、课时小结五、布置作业由四面八方这个成语引出学生对八个方位的理解

1.先以一个具体图形告诉学生基本知识点,方位角一般是以正南正北为基准,然后向东或西旋转所成的角的始边方向。

2.师示范方位角的画法

3.出示补充例题,引对学生通过小组合作完成。思考并回答老师提出的问题

生观察图并理解老师的讲解。

生观察并独立完成书中的例题

生先独立思考然后与同学合作完成。激发学生的学习兴趣

通辽具体图形使学生初步认识方位角的表示方法。

使学生通辽具体操作掌握画方位角的方法

进一步掌握方位角的有关知识,达到知识提升。

板书设计

4.3.3余角和补角(二)——方位角

学生学习活动评价设计

我先将学生按人数分成若干小组,在课前先给学生发放导学单,课上先给学生充分的讨论时间后学生由小组推荐代表发言,累积分数,每个小组轮流回答一次,学生代表回答完毕后,其它同学补充纠错,然后从知识点是否准确,语言是否流利,思维是否创新,逻辑是否合理严密等方面来做出评价,然后给出相应分数。累积到小组积分中课上知识回答后在练习部分,设计抢答题,小组抢答完成。最后计算出总分评出本节课小组及个人奖,给予口头表扬。

教学反思

本节课是在上节课余角和补角的基础上学习的,而且在小学阶段也已经接触过这部分知识了,基于这个特点,在课堂上我主要采取了自主学习的方式,学生接受的不错,本节课的知识虽然简单但很重要是为以后学__面直角坐标系做准备的。出现的问题是有个别同学对于A看B是北偏东30度,则B看A是什么方向不太清楚,我采取的措施是让明白的同学讲给不明白的同学听,指导其主要从哪方面入手解决此类问题,还有一点,学生在画图后容易忽略写结论,应强调。以前在上本节课时,我是采取的讲授法,感觉学生不是很爱听,后来一想,知道了是因为小学时他们已经接触了这部分知识,所以不爱听,针对于这种情况,这次我采用了自主学习的方式感觉学生的积极性上来了,一节课气氛很好,相信效果也不错。以后再讲这节课我将继续采用这种方式,在此基础上使其更加完善。

2024初三数学教案篇13

二次根式

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).

(3)掌握•=(a≥0,b≥0),=•;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1二次根式3课时

21.2二次根式的乘法3课时

21.3二次根式的加减3课时

教学活动、习题课、小结2课时

21.1二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用(a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如(a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“(a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=.

二、探索新知

很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0,有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.当x是多少时,在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.

解:由3x-1≥0,得:x≥

当x≥时,在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时,+在实数范围内有意义?

分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一个正方形的面积是5,那么它的边长是()

A.5B.C.D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时,+x2在实数范围内有意义?

3.若+有意义,则=_______.

4.使式子有意义的未知数x有()个.

A.0B.1C.2D.无数

5.已知a、b为实数,且+2=b+4,求a、b的值.

第一课时作业设计答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=.

2.依题意得:,

∴当x>-且x≠0时,+x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4

2024初三数学教案篇14

教学内容

一元二次方程概念及一元二次方程一般式及有关概念.

教学目标

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.态度、情感、价值观

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

重难点关键

1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

教学过程

一、复习引入

学生活动:列方程.

问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

整理、化简,得:__________.

问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.

如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

整理,得:________.

老师点评并分析如何建立一元二次方程的数学模型,并整理.

二、探索新知

学生活动:请口答下面问题.

(1)上面三个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

解:去括号,得:

40-16x-10x+4x2=18

移项,得:4x2-26x+22=0

其中二次项系数为4,一次项系数为-26,常数项为22.

例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括号,得:

x2+2x+1+x2-4=1

移项,合并得:2x2+2x-4=0

其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

三、巩固练习

教材P32练习1、2

四、应用拓展

例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

证明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不论取何值,该方程都是一元二次方程.

五、归纳小结(学生总结,老师点评)

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

六、布置作业

2024初三数学教案篇15

教学目标:

1.使学生理解直线和圆的相交、相切、相离的概念。

2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。

3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。

重点难点:

1.重点:直线与圆的三种位置关系的概念。

2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。

教学过程:

一.复习引入

1.提问:复习点和圆的三种位置关系。

(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)

2.由日出升起过程当中的三个特殊位置引入直线与圆的位置关系问题。

(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)

二.定义、性质和判定

1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。

(1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。

(2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。

(3)直线和圆没有公共点时,叫做直线和圆相离。

2.直线和圆三种位置关系的性质和判定:

如果⊙O半径为r,圆心O到直线l的距离为d,那么:

(1)线l与⊙O相交d<r

(2)直线l与⊙O相切d=r

(3)直线l与⊙O相离d>r

三.例题分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。

①当r=时,圆与AB相切。

②当r=2cm时,圆与AB有怎样的位置关系,为什么?

③当r=3cm时,圆与AB又是怎样的位置关系,为什么?

④思考:当r满足什么条件时圆与斜边AB有一个交点?

四.小结(学生完成)

五、随堂练习:

(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的.重要方法。

(2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。

①当d=5cm时,直线L与圆的位置关系是;

②当d=13cm时,直线L与圆的位置关系是;

③当d=6。5cm时,直线L与圆的位置关系是;

(目的:直线和圆的位置关系的判定的应用)

(3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L与⊙O至少有一个公共点,则d应满足的条件是()

(A)d=3(B)d≤3(C)d<3d="">3

(目的:直线和圆的位置关系的性质的应用)

(4)⊙O半径=3cm。点P在直线L上,若OP=5cm,则直线L与⊙O的位置关系是()

(A)相离(B)相切(C)相交(D)相切或相交

(目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维)

想一想:

在平面直角坐标系中有一点A(-3,-4),以点A为圆心,r长为半径时,

思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况)

六、作业:P100—2、3

23468